109 research outputs found

    Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles

    Get PDF
    In the present study, the solution and ageing treatments behavior of Mg-RE-Zr-Zn alloy (Elektron21) and its nano-AlN reinforced nanocomposites have been evaluated. The properties of the thermal-treated materials were investigated in terms of Vickers hardness, the area fraction of precipitates, microstructure and phase composition. The solution treatments were performed by treating at 520 ◦C, 550 ◦C and 580 ◦C in argon atmosphere. The outcomes show that the hardness of the solutionized alloys was slightly affected by the solution temperature. X-ray diffraction and image analysis revealed that the complete dissolution of precipitates was not possible, neither for Elektron21 (El21) nor for its AlN containing nanocomposites. The ageing treatment of El21 led to a significant improvement in hardness after 20 h, while for longer times, it progressively decreased. The effect of ageing on the hardness of El21–AlN composites was found to be much less than this effect on the hardness of the host alloy. Electron backscatter diffraction (EBSD) analysis of El21 and El21–1%AlN after solution treatment confirm the random orientation of grains with a typical texture of random distribution. The as-cast creep results showed that the incorporation of nanoparticles could effectively improve the creep properties, while the results after solution treatment at 520 ◦C for 12 h followed by ageing treatment at 200 ◦C for 20 h confirmed that the minimum creep rate of T6-El21 was almost equal to the as-cast El21–AlN

    New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications

    Get PDF
    In this research, copper nanocomposites reinforced by graphene nanoplatelets (GNPs) were fabricated using a wet mixing method followed by a classical powder metallurgy route. In order to find the best dispersion technique, ball milling and wet mixing were chosen. Qualitative evaluation of the structure of the graphene after mixing indicated that the wet mixing is an appropriate technique to disperse the GNPs. Thereafter, the influence of graphene content on microstructure, density, hardness, elastic modulus, and thermal expansion coefficient of composites was investigated. It was shown that by increasing the graphene content the aggregation of graphene is more obvious and, thus, these agglomerates affect the final properties adversely. In comparison with the unreinforced Cu, Cu–GNP composites were lighter, and their hardness and Young’s modulus were higher as a consequence of graphene addition. According to the microstructural observation of pure copper and its composites after sintering, it was concluded that grain refinement is the main mechanism of strengthening in this research. Apart from the mechanical characteristics, the coefficient of thermal expansion of composites decreased remarkably and the combination of this feature with appropriate mechanical properties can make them a promising candidate for use in electronic packaging applications

    An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets

    Get PDF
    This article provides an overview of research efforts with an emphasis on the fabrication of metal matrix nanocomposites (MMNCs) reinforced by graphene nanoplatelets (GNPs). Particular attention is devoted to finding the challenges in the production of MMNCs through the powder metallurgy techniques. The main technical challenges can be listed as: (I) reinforcement selection; (II) dispersion of reinforcement within the matrix; (III) reactivity between the reinforcement and matrix; (IV) interfacial bonding; (V) preferred orientation of reinforcement. It is found that some of these difficulties can be attributed to the nature of the materials involved, while the others are related to the preparation routes. It is reported that the challenges related to the process can often be addressed by changing the production process or by using post-processing techniques. More challenging issues instead are related to the composition of the matrix and reinforcement, their reactivity and the dispersion of reinforcement. These topics still bring significant challenges to the materials scientists, and it would be worth mentioning that the fabrication of MMNCs with a uniform dispersion of reinforcement, strong interfacial bonding, without detrimental reactions and improved isotropic properties is still a puzzling issu

    Is It Antiphospholipid Syndrome?

    Get PDF
    The diagnosis of bacterial endocarditis remains a challenge, as nearly half of cases develop in the absence of preexistent heart disease and known risk factors. Not infrequently, a blunted clinical course at onset can lead to erroneous diagnoses. We present the case of a 47-year-old previously healthy man in which a presumptive diagnosis of antiphospholipid syndrome was made based on the absence of echocardiographically detected heart involvement, a negative blood culture, normal C-reactive protein (CRP) levels, a positive lupus anticoagulant (LAC) test, and evidence of splenic infarcts. The patient eventually developed massive aortic endocarditic involvement, with blood cultures positive for Streptococcus bovis, and was referred for valvular replacement. This case not only reminds us of the diagnostic challenges of bacterial endocarditis, but also underlines the need for a critical application of antiphospholipid syndrome diagnostic criteria

    Reactivity and Microstructure of Al 2

    Get PDF
    Performances of metal matrix composites (MMCs) rely strongly on the distribution of particles within the metal matrix but also on the chemical reaction which may occur at the liquid-solid interfaces. This paper presents the chemical reaction between aluminum based particles Al2O3 and Al2O3-AlOOH with magnesium alloys matrixes AZ91 and EL21, respectively, and studies the microstructure of these reinforced composites. Different methods such as transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and XRD were used to highlight these chemical reactions and to identify products. Results demonstrate the formation of MgO particles within the matrix for both composites and also the dissolution of aluminum in the eutectic region in the case of EL21
    corecore