118 research outputs found
Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain
<p>Abstract</p> <p>Background</p> <p>Although the connective tissues forming the fascial planes of the back have been hypothesized to play a role in the pathogenesis of chronic low back pain (LBP), there have been no previous studies quantitatively evaluating connective tissue structure in this condition. The goal of this study was to perform an ultrasound-based comparison of perimuscular connective tissue structure in the lumbar region in a group of human subjects with chronic or recurrent LBP for more than 12 months, compared with a group of subjects without LBP.</p> <p>Methods</p> <p>In each of 107 human subjects (60 with LBP and 47 without LBP), parasagittal ultrasound images were acquired bilaterally centered on a point 2 cm lateral to the midpoint of the L2-3 interspinous ligament. The outcome measures based on these images were subcutaneous and perimuscular connective tissue thickness and echogenicity measured by ultrasound.</p> <p>Results</p> <p>There were no significant differences in age, sex, body mass index (BMI) or activity levels between LBP and No-LBP groups. Perimuscular thickness and echogenicity were not correlated with age but were positively correlated with BMI. The LBP group had ~25% greater perimuscular thickness and echogenicity compared with the No-LBP group (ANCOVA adjusted for BMI, p < 0.01 and p < 0.001 respectively).</p> <p>Conclusion</p> <p>This is the first report of abnormal connective tissue structure in the lumbar region in a group of subjects with chronic or recurrent LBP. This finding was not attributable to differences in age, sex, BMI or activity level between groups. Possible causes include genetic factors, abnormal movement patterns and chronic inflammation.</p
Recommended from our members
Stretching Reduces Skin Thickness and Improves Subcutaneous Tissue Mobility in a Murine Model of Systemic Sclerosis
Objective: Although physical therapy can help preserve mobility in patients with systemic sclerosis (SSc), stretching has not been used systematically as a treatment to prevent or reverse the disease process. We previously showed in rodent models that stretching promotes the resolution of connective tissue inflammation and reduces new collagen formation after injury. Here, we tested the hypothesis that stretching would impact scleroderma development using a mouse sclerodermatous graft-versus-host disease (sclGvHD) model. Methods: The model consists in the adoptive transfer (allogeneic) of splenocytes from B10.D2 mice (graft) into Rag2−/− BALB/c hosts (sclGvHD), resulting in skin inflammation followed by fibrosis over 4 weeks. SclGvHD mice and controls were randomized to stretching in vivo for 10 min daily versus no stretching. Results: Weekly ultrasound measurements of skin thickness and subcutaneous tissue mobility in the back (relative tissue displacement during passive trunk motion) successfully captured the different phases of the sclGvHD model. Stretching reduced skin thickness and increased subcutaneous tissue mobility compared to no stretching at week 3. Stretching also reduced the expression of CCL2 and ADAM8 in the skin at week 4, which are two genes known to be upregulated in both murine sclGvHD and the inflammatory subset of human SSc. However, there was no evidence that stretching attenuated inflammation at week 2. Conclusion: Daily stretching for 10 min can improve skin thickness and mobility in the absence of any other treatment in the sclGvHD murine model. These pre-clinical results suggest that a systematic investigation of stretching as a therapeutic modality is warranted in patients with SSc
Recommended from our members
Feasibility of automated pre-screening for lifestyle and behavioral health risk factors in primary care
Background: Screening of primary care patients for unhealthy behaviors and mental health issues is recommended by numerous governing bodies internationally, yet evidence suggests that provider-initiated screening is not routine practice. The objective of this study was to implement systematic pre-screening of primary care patients for common preventive health issues on a large scale. Methods: Patients registered for non-acute visits to one of 40 primary care providers from eight clinics in an Academic Medical Center health care network in the United States from May, 2012 to May, 2014 were contacted one- to three-days prior to their visit. Patients were invited to complete a questionnaire using an Interactive Voice Response (IVR) system. Six items assessed pain, smoking, alcohol use, physical activity, concern about weight, and mood. Results: The acceptance rate among eligible patients reached by phone was 65.6 %, of which 95.5 % completed the IVR-Screen (N = 8,490; mean age 57; 57 % female). Sample demographics were representative of the overall primary care population from which participants were drawn on gender, race, and insurance status, but participants were slightly older and more likely to be married. Eighty-seven percent of patients screened positive on at least one item, and 59 % endorsed multiple problems. The majority of respondents (64.2 %) reported being never or only somewhat physically active. Weight concern was reported by 43.9 % of respondents, 36.4 % met criteria for unhealthy alcohol use, 23.4 % reported current pain, 19.6 % reported low mood, and 9.4 % reported smoking. Conclusions: The percent endorsement for each behavioral health concern was generally consistent with studies of screening using other methods, and contrasts starkly with the reported low rates of screening and intervention for such concerns in typical PC practice. Results support the feasibility of IVR-based, large-scale pre-appointment behavioral health/ lifestyle risk factor screening of primary care patients. Pre-screening in this population facilitated participation in a controlled trial of brief treatment for unhealthy drinking, and also could be valuable clinically because it allows for case identification and management during routine care
Recommended from our members
Ultrasound Evaluation of the Combined Effects of Thoracolumbar Fascia Injury and Movement Restriction in a Porcine Model
The persistence of back pain following acute back “sprains” is a serious public health problem with poorly understood pathophysiology. The recent finding that human subjects with chronic low back pain (LBP) have increased thickness and decreased mobility of the thoracolumbar fascia measured with ultrasound suggest that the fasciae of the back may be involved in LBP pathophysiology. This study used a porcine model to test the hypothesis that similar ultrasound findings can be produced experimentally in a porcine model by combining a local injury of fascia with movement restriction using a “hobble” device linking one foot to a chest harness for 8 weeks. Ultrasound measurements of thoracolumbar fascia thickness and shear plane mobility (shear strain) during passive hip flexion were made at the 8 week time point on the non-intervention side (injury and/or hobble). Injury alone caused both an increase in fascia thickness (p = .007) and a decrease in fascia shear strain on the non-injured side (p = .027). Movement restriction alone did not change fascia thickness but did decrease shear strain on the non-hobble side (p = .024). The combination of injury plus movement restriction had additive effects on reducing fascia mobility with a 52% reduction in shear strain compared with controls and a 28% reduction compared to movement restriction alone. These results suggest that a back injury involving fascia, even when healed, can affect the relative mobility of fascia layers away from the injured area, especially when movement is also restricted
Electrical impedance along connective tissue planes associated with acupuncture meridians
BACKGROUND: Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone) visible by ultrasound have greater electrical conductance (less electrical impedance) than non-meridian, parallel control segments. METHODS: We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC) constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps) to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity). RESULTS: At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω) compared with control segments (75.0 ± 5.9 Ω) (p = 0.0003). At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω) and control segments (68.5 ± 7.5 Ω) were not significantly different (p = 0.70). CONCLUSION: Tissue impedance was on average lower along the Pericardium meridian, but not along the Spleen meridian, compared with their respective controls. Ultrasound imaging of meridian and control segments suggested that contact of the needle with connective tissue may explain the decrease in electrical impedance noted at the Pericardium meridian. Further studies are needed to determine whether tissue impedance is lower in (1) connective tissue in general compared with muscle and (2) meridian-associated vs. non meridian-associated connective tissue
Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii
Although Methanocaldococcus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known about the promoters of its protein-coding genes. To expand our knowledge, we have experimentally identified 131 promoters for 107 protein-coding genes in this genome by mapping their transcription start sites. Compared to previously identified promoters, more than half of which are from genes for stable RNAs, the protein-coding gene promoters are qualitatively similar in overall sequence pattern, but statistically different at several positions due to greater variation among their sequences. Relative binding affinity for general transcription factors was measured for 12 of these promoters by competition electrophoretic mobility shift assays. These promoters bind the factors less tightly than do most tRNA gene promoters. When a position weight matrix (PWM) was constructed from the protein gene promoters, factor binding affinities correlated with corresponding promoter PWM scores. We show that the PWM based on our data more accurately predicts promoters in the genome and transcription start sites than could be done with the previously available data. We also introduce a PWM logo, which visually displays the implications of observing a given base at a position in a sequence
Assembling the Marine Metagenome, One Cell at a Time
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
- …