9 research outputs found

    Cell death of Acanthamoeba castellanii following exposure to antimicrobial agents commonly included in contact lens disinfecting solutions

    No full text
    Several antimicrobial agents are commonly included in contact lens disinfectant solutions including chlorhexidine diacetate (CHX), polyhexamethylene biguanide (PHMB) or myristamidopropyl dimethylamine (MAPD); however, their mode of action, i.e. necrosis versus apoptosis is incompletely understood. Here, we determined whether a mechanism of cell death resembling that of apoptosis was present in Acanthamoeba castellanii of the T4 genotype (NEFF) following exposure to the aforementioned antimicrobials using the anticoagulant annexin V that undergoes rapid high affinity binding to phosphatidylserine in the presence of calcium, making it a sensitive probe for phosphatidylserine exposure. The results revealed that under the conditions employed in this study, an apoptotic pathway of cell death in this organism at the tested conditions does not occur. Our findings suggest that necrosis is the likely mode of action; however, future mechanistic studies should be accomplished in additional experimental conditions to further comprehend the molecular mechanisms of cell death in Acanthamoeba

    The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri

    No full text
    Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 μM, while 1k inhibited 50% amoebae growth at 23.31 μM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.</p

    The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri

    No full text
    Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 μM, while 1k inhibited 50% amoebae growth at 23.31 μM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.</p

    Seroprevalence of Toxoplasma gondii, Neospora caninum and Trichinella spp. in Pigs from Cairo, Egypt.

    Get PDF
    Pork production is a niche economy in Egypt, and pigs are typically raised as backyard animals with no sanitary control, potentially exposing them to various pathogens. Commercially available ELISAs were used to detect specific antibodies to the food-borne zoonotic parasites Toxoplasma gondii and Trichinella spp., as well as to Neospora caninum, in serum samples of pigs slaughtered at Egypt's only licensed pig abattoir, the El-Bassatin abattoir in Cairo. Among the tested sera (n = 332), seroreactivity for T. gondii was 45.8% (95% confidence interval: 40.4-51.3), N. caninum was 28.0% (95% CI: 23.3-33.2), and Trichinella spp. was 1.2% (95% CI: 0.4-3.3). Mixed infection was only detected for T. gondii and N. caninum (18.7%; 95% CI: 14.7-23.4). The seroprevalence of T. gondii was significantly higher (p = 0.0003) in animals collected from southern Cairo (15 May city slum) than in eastern Cairo (Ezbet El Nakhl slum). Seroprevalence for N. caninum was higher in western (Manshiyat Naser slum; p = 0.0003) and southern Cairo (15 May city slum; p = 0.0003) than in that of eastern Cairo (Ezbet El Nakhl slum; p = 0.0003). Moreover, female pigs exhibited a higher rate of N. caninum antibodies than male ones (p < 0.0001). This study provides the first seroprevalence data for N. caninum in pigs in Egypt, and updates the prevalence of the zoonotic parasites Trichinella spp. and T. gondii

    Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation

    No full text
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential

    Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation

    No full text
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05–0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.</p

    Nanomedicine:Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens

    No full text
    With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.</p

    Nanomedicine:Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens

    No full text
    With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.</p

    Exposure to <i>Brucella</i> Species, <i>Coxiella burnetii</i>, and <i>Trichinella</i> Species in Recently Imported Camels from Sudan to Egypt: Possible Threats to Animal and Human Health

    Get PDF
    Brucellosis and coxiellosis/Q fever are bacterial infections caused by Brucella species and Coxiella burnetii, respectively; camels are highly susceptible to both pathogens. Trichinellosis is a parasitic infection caused by various Trichinella nematode species. Reportedly, camels are susceptible to experimental infection with Trichinella spp., but information on this potential host species is scarce. All three infections are of zoonotic nature and thus of great public health concern. The current study aimed to determine antibodies against the three pathogens in recently imported camels (n = 491) from Sudan at the two main ports for the entrance of camels into southern Egypt using commercial indirect ELISAs. Samples were collected in two sampling periods. The seropositivity rates of Brucella spp., C. burnetii, and Trichinella spp. were 3.5%, 4.3%, and 2.4%, respectively. Mixed seropositivity was found in 1% for Brucella spp. and C. burnetii. Marked differences were found between the two study sites and the two sampling periods for Brucella. A higher rate of seropositivity was recorded in the Red Sea/older samples that were collected between 2015 and 2016 (4.3%, 17/391; odds ratio = 9.4; p C. burnetii, samples collected during November and December 2015 had a significantly higher positivity rate than the other samples (13%, 13/100; OD = 4.8; p Trichinella spp., with samples collected during November and December 2015 showing a higher positivity rate than the other samples (7%, 7/100; OD = 10.9; p Brucella spp. and additional novel information on C. burnetii and Trichinella spp. in recently imported camels kept in quarantine before delivery to other Egyptian regions. This knowledge can be utilized to reduce health hazards and financial burdens attributable to brucellosis, Q fever, and trichinellosis in animals and humans in Egypt
    corecore