125 research outputs found
Efficacy of vildagliptin versus sulfonylureas as add-on therapy to metformin: comparison of results from randomised controlled and observational studies.
Randomised control trials (RCTs) do not always reflect real-life outcomes for glucose-lowering drugs. In this work we compared RCT and real-life data on the efficacy of the dipeptidyl peptidase-IV (DPP-4) inhibitor vildagliptin or sulfonylureas when added to metformin
Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes
We present here a new family of trapdoor one-way Preimage Sampleable
Functions (PSF) based on codes, the Wave-PSF family. The trapdoor function is
one-way under two computational assumptions: the hardness of generic decoding
for high weights and the indistinguishability of generalized -codes.
Our proof follows the GPV strategy [GPV08]. By including rejection sampling, we
ensure the proper distribution for the trapdoor inverse output. The domain
sampling property of our family is ensured by using and proving a variant of
the left-over hash lemma. We instantiate the new Wave-PSF family with ternary
generalized -codes to design a "hash-and-sign" signature scheme which
achieves existential unforgeability under adaptive chosen message attacks
(EUF-CMA) in the random oracle model. For 128 bits of classical security,
signature sizes are in the order of 15 thousand bits, the public key size in
the order of 4 megabytes, and the rejection rate is limited to one rejection
every 10 to 12 signatures.Comment: arXiv admin note: text overlap with arXiv:1706.0806
The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment
Kinastrin is identified as a major interacting partner for astrin in mitotic cells, and is required for astrin targeting to microtubule plus ends
Effect of Constitution on Mass of Individual Organs and Their Association with Metabolic Rate in Humans—A Detailed View on Allometric Scaling
Resting energy expenditure (REE)-power relationships result from multiple underlying factors including weight and height. In addition, detailed body composition, including fat free mass (FFM) and its components, skeletal muscle mass and internal organs with high metabolic rates (i.e. brain, heart, liver, kidneys), are major determinants of REE. Since the mass of individual organs scales to height as well as to weight (and, thus, to constitution), the variance in these associations may also add to the variance in REE. Here we address body composition (measured by magnetic resonance imaging) and REE (assessed by indirect calorimetry) in a group of 330 healthy volunteers differing with respect to age (17–78 years), sex (61% female) and BMI (15.9–47.8 kg/m2). Using three dimensional data interpolation we found that the inter-individual variance related to scaling of organ mass to height and weight and, thus, the constitution-related variances in either FFM (model 1) or kidneys, muscle, brain and liver (model 2) explained up to 43% of the inter-individual variance in REE. These data are the first evidence that constitution adds to the complexity of REE. Since organs scale differently as weight as well as height the “fit” of organ masses within constitution should be considered as a further trait
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: Evaluation in Alzheimer's disease
Background: Although convolutional neural networks (CNN) achieve high
diagnostic accuracy for detecting Alzheimer's disease (AD) dementia based on
magnetic resonance imaging (MRI) scans, they are not yet applied in clinical
routine. One important reason for this is a lack of model comprehensibility.
Recently developed visualization methods for deriving CNN relevance maps may
help to fill this gap. We investigated whether models with higher accuracy also
rely more on discriminative brain regions predefined by prior knowledge.
Methods: We trained a CNN for the detection of AD in N=663 T1-weighted MRI
scans of patients with dementia and amnestic mild cognitive impairment (MCI)
and verified the accuracy of the models via cross-validation and in three
independent samples including N=1655 cases. We evaluated the association of
relevance scores and hippocampus volume to validate the clinical utility of
this approach. To improve model comprehensibility, we implemented an
interactive visualization of 3D CNN relevance maps.
Results: Across three independent datasets, group separation showed high
accuracy for AD dementia vs. controls (AUC0.92) and moderate accuracy for
MCI vs. controls (AUC0.75). Relevance maps indicated that hippocampal
atrophy was considered as the most informative factor for AD detection, with
additional contributions from atrophy in other cortical and subcortical
regions. Relevance scores within the hippocampus were highly correlated with
hippocampal volumes (Pearson's r-0.86, p<0.001).
Conclusion: The relevance maps highlighted atrophy in regions that we had
hypothesized a priori. This strengthens the comprehensibility of the CNN
models, which were trained in a purely data-driven manner based on the scans
and diagnosis labels.Comment: 24 pages, 9 figures/tables, supplementary material, source code
available on GitHu
Approaches for bridging therapy prior to chimeric antigen receptor T cells for relapsed/refractory acute lymphoblastic B-lineage leukaemia in children and young adults
The ongoing development of immunotherapies, including chimeric antigen receptor (CAR) T cells, has revolutionized cancer treatment. In paediatric relapsed/refractory B-lineage acute leukaemia antiCD19-CARs induced impressive initial response rates, with event-free survival plateauing at 30-50% in long-term follow-up data. During the interval between diagnosis of relapse or refractoriness and CAR T cell infusion, patients require a bridging therapy. To date, this therapy has consisted of highly variable approaches based on local experience. Here, in an European collaborative effort of paediatric and adult haematologists, we summarise current knowledge with the aim of establishing a guidance for bridging therapy. This includes treatment strategies for different patient subgroups, the advantages and disadvantages of low- and highintensity regimens, and the potential impact of bridging therapy on outcome after CAR T cell infusion. This guidance is a step towards a cross-institutional harmonization of bridging therapy, including personalized approaches. This will allow better comparability of clinical data and increase the level of evidence for the treatment of children and young adults with relapsed/refractory B-lineage ALL until CAR T cell infusion
A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes
The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types
- …