6 research outputs found

    Stimulation of the A2B adenosine receptor subtype enhances connexin26 hemichannel activity in small airway epithelial cells

    Get PDF
    Background/Aims: Adenosine release and connexin (Cx) hemichannel activity are enhanced in the respiratory epithelium during pathophysiological events such as inflammation. We analysed the interplay between Cx channels and adenosine signalling in human respiratory airway epithelium using the Calu-3 cell line as a model. Methods: The Cx hemichannel activity in Calu-3 cells was evaluated by dye uptake assays. The expressed Cx isoforms and adenosine receptor subtypes were identified by PCR and western blot analysis. Pharmacological and molecular biological experiments were performed to analyse the involvement of the different adenosine receptor subtypes, the induced signalling pathways and the contribution of specific Cx isoforms to the hemichannel activity. Results: The adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased the dye uptake rate in Calu-3 cells. The pannexon and Cx hemichannel inhibitor carbenoxolone (CBX) did not supress the dye uptake at pannexin-specific concentrations (100 µM). High CBX concentrations or the inhibitor La3+, both effective on Cx hemichannels, were needed to inhibit the dye uptake. The NECA-related increase of dye uptake depended on enhanced cAMP synthesis and subsequent activation of the protein kinase A (PKA) as shown by quantification of cAMP levels and pharmacological inhibition of the adenylyl cyclase and the PKA. Further pharmacological inhibition as well as knockdown experiments with specific siRNA showed that the A2B adenosine receptor was the subtype mainly responsible for the increased dye uptake. The NECA-related increase of the dye uptake rate correlated with a decrease of Cx43 mRNA and an increase of Cx26 mRNA content in the cells as well as Cx26 protein synthesis and was inhibited by Cx26 knockdown using Cx26 siRNA. Of note, a siRNA-induced knockdown of Cx43 increased the content of Cx26 mRNA and correspondingly the dye uptake rate. Conclusion: The Calu-3 cell model shows that stimulation of the A2B adenosine receptor subtype activates synthesis of cAMP. cAMP activates PKA and induces thereby an increase in Cx26 and a decrease in Cx43 mRNA levels. As a result, the synthesis of Cx26 is reinforced, leading to an enhanced Cx hemichannel activity. The report identifies a mechanism that integrates adenosine release and Cx hemichannel activity and shows how adenosine signalling and Cx channels may act together to promote persistent inflammation, which is observed in several chronic diseases of the respiratory airway

    Structure and Emerging Functions of LRCH Proteins in Leukocyte Biology

    Get PDF
    Actin-dependent leukocyte trafficking and activation are critical for immune surveillance under steady state conditions and during disease states. Proper immune surveillance is of utmost importance in mammalian homeostasis and it ensures the defense against pathogen intruders, but it also guarantees tissue integrity through the continuous removal of dying cells or the elimination of tumor cells. On the cellular level, these processes depend on the precise reorganization of the actin cytoskeleton orchestrating, e.g., cell polarization, migration, and vesicular dynamics in leukocytes. The fine-tuning of the actin cytoskeleton is achieved by a multiplicity of actin-binding proteins inducing, e.g., the organization of the actin cytoskeleton or linking the cytoskeleton to membranes and their receptors. More than a decade ago, the family of leucine-rich repeat (LRR) and calponin homology (CH) domain-containing (LRCH) proteins has been identified as cytoskeletal regulators. The LRR domains are important for protein-protein interactions and the CH domains mediate actin binding. LRR and CH domains are frequently found in many proteins, but strikingly the simultaneous expression of both domains in one protein only occurs in the LRCH protein family. To date, one LRCH protein has been described in drosophila and four LRCH proteins have been identified in the murine and the human system. The function of LRCH proteins is still under investigation. Recently, LRCH proteins have emerged as novel players in leukocyte function. In this review, we summarize our current understanding of LRCH proteins with a special emphasis on their function in leukocyte biology

    Molecular Insights Into Neutrophil Biology From the Zebrafish Perspective: Lessons From CD18 Deficiency

    Get PDF
    Neutrophils are key players in innate immunity and originate from the bone marrow of the adult mammalian organism. In mammals, mature neutrophils are released from the bone marrow into the peripheral blood where they circulate until their recruitment to sites of inflammation in a multistep adhesion cascade. Here, adhesion molecules of the beta(2) integrin family (CD11/CD18) are critically required for the initial neutrophil adhesion to the inflamed endothelium and several post-adhesion steps allowing their extravasation into the inflamed tissue. Within the mammalian tissue, interstitial neutrophil migration can occur widely independent of beta(2) integrins. This is in sharp contrast to neutrophil recruitment in zebrafish larvae (Danio rerio) where neutrophils originate from the caudal hematopoietic tissue and mainly migrate interstitially to sites of lesion upon the early onset of inflammation. However, neutrophils extravasate from the circulation to the inflamed tissue in zebrafish larvae at later-time points. Although zebrafish larvae are a widely accepted model system to analyze neutrophil trafficking in vivo, the functional impact of beta(2) integrins for neutrophil trafficking during acute inflammation is completely unknown in this model. In this study, we generated zebrafish with a genetic deletion of CD18, the beta subunit of beta(2) integrins, using CRISPR/Cas9 technology. Sequence alignments demonstrated a high similarity of the amino acid sequences between zebrafish and human CD18 especially in the functionally relevant I-like domain. In addition, the cytoplasmic domain of CD18 harbors two highly conserved NXXF motifs suggesting that zebrafish CD18 may share functional properties of human CD18. Accordingly, CD18 knock-out (KO) zebrafish larvae displayed the key symptoms of patients suffering from leukocyte adhesion deficiency (LAD) type I due to defects in ITGB2, the gene for CD18. Importantly, CD18 KO zebrafish larvae showed reduced neutrophil trafficking to sites of sterile inflammation despite the fact that an increased number of neutrophils was detectable in the circulation. By demonstrating the functional importance of CD18 for neutrophil trafficking in zebrafish larvae, our findings shed new light on neutrophil biology in vertebrates and introduce a new model organism for studying LAD type I

    Integration of gap junction coupling in adenosine signalling of endothelial cells

    Get PDF
    By allowing a direct exchange of ions and metabolites between cells, gap junctions participate in the formation of physiological units in tissues. Gap junctions in endothelial cells are essential for maintaining vascular functions. Adenosine is a ubiquitous extracellular signalling molecule that can evoke cellular responses in large tissue areas by binding in a paracrine manner to its receptors. Adenosine receptor-dependent signalling mechanisms regulate several vascular functions, for example vasodilation or endothelial barrier properties. Since gap junctions are important for various tissue functions, it is essential to include the gap junction regulation into general signalling mechanisms within tissues. Therefore, the regulation of gap junction coupling by adenosine receptor signalling was analysed in the presented work. Activation of the adenosine receptor subtype A2B significantly increased the gap junction coupling and the amount of connexin43 gap junction plaques in microvascular endothelial hCMEC/D3 cells via activation of cyclic nucleotide-gated (CNG) channels. On functional level the regulation of gap junctions upon adenosine receptor activation and especially the involvement of CNG channels is as yet a disregarded signalling link and could provide new insights for example into the regulation of inflammatory conditions. Analysis of gap junction coupling was performed with scrape loading/dye transfer assays. To improve this technique a gold nanoparticle-mediated laser perforation/dye transfer (GNOME LP/DT) method was established for a non-invasive, cell-friendly analysis of gap junction-dependent cell coupling. The GNOME LP/DT method enabled the analysis of gap junction coupling with similar results as scrape loading/dye transfer assays and was more reproducible. Additionally, the GNOME LP/DT method was successfully applied to sensitive cells and in complex cell culture systems, for example three-dimensional cell culture or co-culture of blood-brain barrier cells in transwell inserts. Applying the GNOME LP/DT method in such cell culture systems in combination with transendothelial resistance measurements can provide new insight into the role of gap junctions in the physiology of the blood-brain barrier

    Decoding the signaling profile of hematopoietic progenitor kinase 1 (HPK1) in innate immunity: A proteomic approach

    Get PDF
    Signaling via beta(2) integrins (CD11/CD18) as well as TCRs and BCRs involves similar pathways. However, the activation of the same signaling molecule can result in opposing effects. One such example is the hematopoietic progenitor kinase 1 (HPK1), which negatively regulates T and B cell activation but enforces neutrophil adhesion via beta(2) integrins. This difference may be defined by specific HPK1 interacting networks in different leukocyte subsets which have already been described in the adaptive immune system. Here, we set out to identify interacting proteins of HPK1 in neutrophil-like differentiated HL-60 cells exposed to immobilized fibrinogen and left nonactivated or Mn2+-activated to allow beta(2) integrin-dependent adhesion. Co-IP experiments followed by mass spectrometry led to the identification of 115 HPK1-interacting proteins. A total of 58 proteins were found only in nonactivated cells and 39 proteins only in Mn2+-activated adherent cells. From these results, we decoded a pre-existing signaling cluster of HPK1 in nonactivated cells encompassing proteins essential for beta(2) integrin-mediated signaling during neutrophil trafficking, namely DNAX-activation protein 12 (DAP12), spleen tyrosine kinase (Syk), and Rac1. Thus, our study provides novel insights into the complex architecture of the signaling processes during neutrophil activation and the complex signaling profile of HPK1 in leukocytes

    Tumour-treating fields (TTFields): Investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis

    Get PDF
    Tumour-treating fields (TTFields) use alternating electric fields which interfere with dividing cells, thereby reducing tumour growth. Previous reports suggest that electrical forces on cell structure proteins interfered with the chromosome separation during mitosis and induced apoptosis. In the present report we evaluate electromagnetic exposure of cells in telophase/cytokinesis in order to further analyse the mechanism of action on cells. We performed numerical electromagnetic simulations to analyse the field distribution in a cell during different mitotic phases. Based thereon, we developed an electric lumped element model of the mitotic cell. Both the electromagnetic simulation and the lumped element model predict a local increase of the specific absorption rate (SAR) as a measure of the electromagnetically induced power absorption density at the mitotic furrow which may help to explain the anti-proliferative effect. In accordance with other reports, cell culture experiments confirmed that TTFields reduce the proliferation of different glioma cell lines in a field strength- and frequency-dependent manner. Furthermore, we found an additional dependence on the commutation time of the electrical fields. The report gives new insights into TTFields’ anti-proliferative effect on tumours, which could help to improve future TTFields application system
    corecore