7,152 research outputs found
Characterization of hormone and protein release from alpha-toxin- permeabilized chromaffin cells in primary culture
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+- dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha- toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact
Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime
We report on dynamics of non-local Abrikosov vortex flow in mesoscopic
superconducting Nb channels. Magnetic field dependence of the non-local voltage
induced by the flux flow shows that vortices form ordered vortex chains.
Voltage asymmetry (rectification) with respect to the direction of vortex flow
is evidence that vortex jamming strongly moderates vortex dynamics in
mesoscopic geometries. The findings can be applied to superconducting devices
exploiting vortex dynamics and vortex manipulation, including superconducting
wires with engineered pinning centers.Comment: 5 pages, 3 figure
Surface spin flip probability of mesoscopic Ag wires
Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is
studied via nonlocal spin valve and Hanle effect measurements performed on
permalloy/Ag lateral spin valves. The ratio between momentum and spin
relaxation times is not constant at low temperatures. This can be explained
with the Elliott-Yafet spin relaxation mechanism by considering the momentum
surface relaxation time as being temperature dependent. We present a model to
separately determine spin flip probabilities for phonon, impurity and surface
scattering and find that the spin flip probability is highest for surface
scattering.Comment: 5 pages, 4 figure
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals
There is a number of explicit kinetic energy density functionals for
non-interacting electron systems that are obtained in terms of the electron
density and its derivatives. These semilocal functionals have been widely used
in the literature. In this work we present a comparative study of the kinetic
energy density of these semilocal functionals, stressing the importance of the
local behavior to assess the quality of the functionals. We propose a quality
factor that measures the local differences between the usual orbital-based
kinetic energy density distributions and the approximated ones, allowing to
ensure if the good results obtained for the total kinetic energies with these
semilocal functionals are due to their correct local performance or to error
cancellations. We have also included contributions coming from the laplacian of
the electron density to work with an infinite set of kinetic energy densities.
For all the functionals but one we have found that their success in the
evaluation of the total kinetic energy are due to global error cancellations,
whereas the local behavior of their kinetic energy density becomes worse than
that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
Quantum kinetic energy densities: An operational approach
We propose and investigate a procedure to measure, at least in principle, a
positive quantum version of the local kinetic energy density. This procedure is
based, under certain idealized limits, on the detection rate of photons emitted
by moving atoms which are excited by a localized laser beam. The same type of
experiment, but in different limits, can also provide other non
positive-definite versions of the kinetic energy density. A connection with
quantum arrival time distributions is discussed.Comment: 13 pages, 1 figure
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
A hard metallic material: Osmium Diboride
We calculate the structural and electronic properties of OsB2 using density
functional theory with or without taking into account spin-orbit (SO)
interaction. Our results show that the bulk modulus with and without SO
interaction are 364 and 365 Gpa respectively, both are in good agreement with
experiment (365-395 Gpa). The evidence of covalent bonding of Os-B, which plays
an important role to form a hard material, is indicated both in charge density,
atoms in molecules analysis, and density of states analysis. The good
metallicity and hardness of OsB2 might suggest its potential application as
hard conductors.Comment: Figures improve
- …
