10 research outputs found

    Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels

    No full text
    Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs

    COVID-19 Vaccine Does Not Increase the Risk of Disease Flare-Ups among Patients with Autoimmune and Immune-Mediated Diseases

    No full text
    Background: Reports describing post-vaccine autoimmune phenomena, in previously healthy individuals, increased the concerns regarding the risk of disease flare-ups in patients with immune diseases. We aimed to assess the potential risk of disease flare-up, after receiving the COVID-19 (Coronavirus disease 2019) vaccine, during a follow-up period of 6 months. Methods: We performed a prospective cohort study, enrolling the patients with autoimmune- and immune-mediated diseases who voluntarily completed our questionnaire, both online and during hospital evaluations. Based on their decision to receive the vaccine, the patients were divided into two groups (vaccinated and non-vaccinated). Participants who chose not to receive the vaccine served as a control group in terms of flare-ups. Results: A total of 623 patients, 416 vaccinated and 207 non-vaccinated, were included in the study during hospital evaluations (222/623) and after online (401/623) enrolment. There was no difference concerning the risk of flare-up between vaccinated and non-vaccinated patients (1.16, versus 1.72 flare-ups/100 patients-months, p = 0.245). The flare-ups were associated with having more than one immune disease, and with a previous flare-up during the past year. Conclusions: We did not find an increased risk of flare-up following COVID-19 vaccination in patients with autoimmune-/immune-mediated diseases, after a median follow-up of 5.9 months. According to our results, there should not be an obvious reason for vaccine hesitancy among this category of patients

    Different effects of anti-TNF-alpha biologic drugs on the small bowel macroscopic inflammation in patients with ankylosing spondylitis

    No full text
    Background & Aims. Considering the ability of anti-TNF alpha drugs to lower the burden intestinal inflammation in patients with inflammatory bowel disease (IBD), and the similarity between IBD and ankylosing spondylitis (AS) regarding inflammatory intestinal involvement, we aimed to investigate the impact of anti-TNF alpha biologic therapy on subclinical intestinal inflammation in AS patients

    COVID-19 Impact and Vaccination Willingness among Romanian Patients with Autoimmune/Immune-Mediated Diseases

    No full text
    Background: During the COVID-19 pandemic, patients with immune diseases are a vulnerable population. We aimed to evaluate their access to medical care, as well as their awareness and willingness to obtain the vaccine after a year of the SARS-CoV-2 pandemic. Methods: A cross-sectional, multicenter study was conducted on a questionnaire basis, handled both online as well as in person. Results: 651 patients with autoimmune or immune mediated diseases were enrolled. More than half (339/641 [53%]) reported difficulties in obtaining medical care throughout the pandemic and 135/651 ([21%]) of them were confirmed with COVID-19; 442/651, ([68%]) expressed their willingness to be vaccinated against SARS-CoV-2. The factors associated with an increased probability of vaccination were the male gender (OR = 2.01, CI95% 1.2–3.7, p = 0.001), the patient’s opinion that she/he was well informed (OR = 3.2, CI 95% 2.1–6.01, p < 0.001), physician’s advice (OR = 2.1, CI 95% 1.3–3.5, p < 0.001), and flu vaccination in the past (OR = 1.5, CI 95% 1.1–2.3, p < 0.001), while those associated with a decreased probability of vaccination were COVID-19 disease in the past medical history (OR = 0.7, CI 95% 0.3-0.95, p = 0.02), and the opinion that patients with autoimmune diseases are at increased risk for adverse reactions (OR = 0.7, CI95% 0.53–0.89, p = 0.001). Conclusions: Given the fact that considering themselves informed regarding vaccination is the most important factor in order to be immunized against SARS-CoV-2, effective information campaigns would substantially increase willingness

    Evaluation of <i>Usnea barbata</i> (L.) Weber ex F.H. Wigg Extract in Canola Oil Loaded in Bioadhesive Oral Films for Potential Applications in Oral Cavity Infections and Malignancy

    No full text
    Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Călimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film’s weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia

    Formulation and Development of Bioadhesive Oral Films Containing <i>Usnea barbata</i> (L.) F.H.Wigg Dry Ethanol Extract (F-UBE-HPC) with Antimicrobial and Anticancer Properties for Potential Use in Oral Cancer Complementary Therapy

    No full text
    Medical research explores plant extracts’ properties to obtain potential anticancer drugs. The present study aims to formulate, develop, and characterize the bioadhesive oral films containing Usnea barbata (L.) dry ethanol extract (F-UBE-HPC) and to investigate their anticancer potential for possible use in oral cancer therapy. The physicochemical and morphological properties of the bioadhesive oral films were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), thermogravimetric analysis (TG), and X-ray diffraction techniques. Pharmacotechnical evaluation (consisting of the measurement of the specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) completed the bioadhesive films’ analysis. Next, oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBE-HPC in normal blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line and its influence on both cell types’ division and proliferation was evaluated. The results reveal that each F-UBE-HPC contains 0.330 mg dry extract with a usnic acid (UA) content of 0.036 mg. The bioadhesive oral films are thin (0.093 ± 0.002 mm), reveal a neutral pH (7.10 ± 0.02), a disintegration time of 118 ± 3.16 s, an ex vivo bioadhesion time of 98 ± 3.58 min, and show a swelling ratio after 6 h of 289 ± 5.82%, being suitable for application on the oral mucosa. They displayed in vitro anticancer activity on CLS-354 tumor cells. By considerably increasing cellular oxidative stress and caspase 3/7 activity, they triggered apoptotic processes in oral cancer cells, inducing high levels of nuclear condensation and lysosomal activity, cell cycle arrest in G0/G1, and blocking DNA synthesis. All these properties lead to considering the UBE-loaded bioadhesive oral films suitable for potential application as a complementary therapy in oral cancer

    In Vitro Anticancer Activity of Mucoadhesive Oral Films Loaded with <i>Usnea barbata</i> (L.) F. H. Wigg Dry Acetone Extract, with Potential Applications in Oral Squamous Cell Carcinoma Complementary Therapy

    No full text
    Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts’ properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC

    Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC

    No full text
    The oral cavity&rsquo;s common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 &micro;g UBE, with a total phenolic content (TPC) of 178.849 &micro;g and 33.924 &micro;g usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 &plusmn; 4.31 mg, a pH = 7.05 &plusmn; 0.04, a disintegration time of 130 &plusmn; 4.14 s, a swelling ratio of 272 &plusmn; 6.31% after 6 h, and a mucoadhesion time of 102 &plusmn; 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy

    The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference

    No full text
    corecore