5 research outputs found
Design and Development of a Remote-Control Test Bench for Remote Piloted Aircraft\u27s Brushless Motors
The present paper is focused on designing and manufacturing a remote-control test bench for RPA\u27s brushless motors. The main components of the testing bench (structural, mechanical and electric components) are presented, how they are coupled, and the operating principle. The test bench is characterized by five emergency systems, one manual and four automated emergency systems that can stop the test under different conditions to avoid damaging the motor. To validate the testing bench, a SK3-5045 660 kV electric motor was selected along with a carbon fibre reinforced composite propeller. It was experimentally demonstrated that the test bench was fully automated, there were measured the propulsion force, current intensity, voltage, but also the consumed power of a motor intended for an RPA. The test results were used to determine the motorization performance and power consumption of an RPA designed with four electric motors (quadcopter type)
Electrical and Electro-Thermal Characteristics of (Carbon Black-Graphite)/LLDPE Composites with PTC Effect
Electrical properties and electro-thermal behavior were studied in composites with carbon black (CB) or hybrid filler (CB and graphite) and a matrix of linear low-density polyethylene (LLDPE). LLDPE, a (co)polymer with low crystallinity but with high structural regularity, was less studied for Positive Temperature Coefficient (PTC) applications, but it would be of interest due to its higher flexibility as compared to HDPE. Structural characterization by scanning electron microscopy (SEM) confirmed a segregated structure resulted from preparation by solid state powder mixing followed by hot molding. Direct current (DC) conductivity measurements resulted in a percolation threshold of around 8% (w) for CB/LLDPE composites. Increased filler concentrations resulted in increased alternating current (AC) conductivity, electrical permittivity and loss factor. Resistivity-temperature curves indicate the dependence of the temperature at which the maximum of resistivity is reached (Tmax(R)) on the filler concentration, as well as a differentiation in the Tmax(R) from the crystalline transition temperatures determined by DSC. These results suggest that crystallinity is not the only determining factor of the PTC mechanism in this case. This behavior is different from similar high-crystallinity composites, and suggests a specific interaction between the conductive filler and the polymeric matrix. A strong dependence of the PTC effect on filler concentration and an optimal concentration range between 14 and 19% were also found. Graphite has a beneficial effect not only on conductivity, but also on PTC behavior. Temperature vs. time experiments, revealed good temperature self-regulation properties and current and voltage limitation, and irrespective of the applied voltage and composite type, the equilibrium superficial temperature did not exceed 80 °C, while the equilibrium current traversing the sample dropped from 22 mA at 35 V to 5 mA at 150 V, proving the limitation capacities of these materials. The concentration effects revealed in this work could open new perspectives for the compositional control of both the self-limiting and interrupting properties for various low-temperature applications
Assessment of Hot Corrosion in Molten Na2SO4 and V2O5 of Inconel 625 Fabricated by Selective Laser Melting versus Conventional Technology
Inconel 625 samples, obtained by Selective Laser Melting (SLM) and conventional technology, were tested for hot corrosion resistance against a molten mixture of Na2SO4 and V2O5. The assessments were performed in air, at 900 °C with exposure time of up to 96 h, and at 1000 °C for 8 h. Weight gain was higher for samples obtained by SLM, with 37.4% after 8 h, 3.98% after 24 h, 4.46% after 48 h, and 5.8% after 96 h at 900 °C (22.6% at 1000 °C, 8 h). Three stages of corrosion were observed, the first and last with a high corrosion rate, while the second one showed a slower corrosion rate. Corrosion behaviour depends on the morphology of the grain boundary, which can influence the infiltration of corrosive salts, and on the formation of Cr2NiO4 compound, which acts as a temporary barrier
Investigation of High-Temperature Oxidation Behavior of Additive Manufactured CoCrMo Alloy for Mandrel Manufacturing
The cyclic oxidation behavior of an additive manufactured CoCrMo alloy with 0.14 wt.% C was investigated at 914 °C for 32 cycles, each lasting 10 h, resulting in a total exposure time of 320 h. The oxidation rate was assessed for mass gain after finishing each 40 h oxidation cycle. It was experimentally determined that the oxidative process at 914 °C of this CoCrMo alloy follows a parabolic law, with the process being fast at the beginning and slowing down after the first 40 h. The microstructural analysis revealed that in the as-printed state, the phases developed were primarily the γ matrix and minor traces of ε phase. The oxidative process ensured an increase in the ε phase and precipitation of carbides which produced a 12% increase in the material’s hardness after the first 40 h of exposure at 914 °C. The oxidation process led to the development of an oxide scale comprising a dense Cr2O3 layer and a porous layer of CoCr2O4 spinel, the latter spalling after the 240 h of exposure. Despite this spallation, the oxide scale continued to develop in the presence of O, Cr, and Co. The experimental analysis provided valuable insights regarding the material’s behavior under prolonged exposure at high temperature in air, demonstrating its suitability as a candidate for additive manufactured mandrels used for bending metallic pipe fitting elbows