86 research outputs found
Recommended from our members
Subsecond total-body imaging using ultrasensitive positron emission tomography.
A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers)
Multiparametric Cardiac 18F-FDG PET in Humans: Kinetic Model Selection and Identifiability Analysis
Cardiac 18F-FDG PET has been used in clinics to assess myocardial glucose
metabolism. Its ability for imaging myocardial glucose transport, however, has
rarely been exploited in clinics. Using the dynamic FDG-PET scans of ten
patients with coronary artery disease, we investigate in this paper appropriate
dynamic scan and kinetic modeling protocols for efficient quantification of
myocardial glucose transport. Three kinetic models and the effect of scan
duration were evaluated by using statistical fit quality, assessing the impact
on kinetic quantification, and analyzing the practical identifiability. The
results show that the kinetic model selection depends on the scan duration. The
reversible two-tissue model was needed for a one-hour dynamic scan. The
irreversible two-tissue model was optimal for a scan duration of around 10
minutes. If the scan duration was shortened to 2 minutes, a one-tissue model
was the most appropriate. For global quantification of myocardial glucose
transport, we demonstrated that an early dynamic scan with a duration of 10
minutes and irreversible kinetic modeling was comparable to the full one-hour
scan with reversible kinetic modeling. Myocardial glucose transport
quantification provides an additional physiological parameter on top of the
existing assessment of glucose metabolism, which may be used as a surrogate of
myocardial blood flow to enable single tracer multiparametric imaging in the
myocardium.Comment: 10 pages, 8 figure
Recommended from our members
The role of brown adipose tissue in branched-chain amino acid clearance in people
Brown adipose tissue (BAT) in rodents appears to be an important tissue for the clearance of plasma branched-chain amino acids (BCAAs) contributing to improved metabolic health. However, the role of human BAT in plasma BCAA clearance is poorly understood. Here, we evaluate patients with prostate cancer who underwent positron emission tomography-computed tomography imaging after an injection of 18F-fluciclovine (L-leucine analog). Supraclavicular adipose tissue (AT; primary location of human BAT) has a higher net uptake rate for 18F-fluciclovine compared to subcutaneous abdominal and upper chest AT. Supraclavicular AT 18F-fluciclovine net uptake rate is lower in patients with obesity and type 2 diabetes. Finally, the expression of genes involved in BCAA catabolism is higher in the supraclavicular AT of healthy people with high BAT volume compared to those with low BAT volume. These findings support the notion that BAT can potentially function as a metabolic sink for plasma BCAA clearance in people
Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy
PurposeThe primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes.MethodsBetween 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Three observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software.ResultsGood intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472).ConclusionSemiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival
Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification
The aim of this study is to evaluate the benefit of long axial field-of-view (AFOV) PET scanners on region of interest (ROI) quantification. We simulated a series of PET scanners with an AFOV ranging from 22 cm to 220 cm. A theoretical framework was used to predict the contrast recovery coefficient (CRC) and the variance of ROI quantification in penalized maximum likelihood (ML) image reconstruction, in which the resolution and noise tradeoff was controlled by a regularization parameter with a quadratic penalty function. The characterization was based on the converged penalized ML reconstruction with an accurate system model. We examined quantification of a 2 mm ROI and 10 mm ROI in a clinically relevant scan range of 110 cm. Multiple bed positions with 50% overlap were used for scanners with shorter AFOV to provide a relatively uniform sensitivity across the 110 cm axial range. A uniform water cylinder of 20 cm in diameter and 230 cm in length was chosen to model the attenuation and background activity. We computed the variance reduction factor at fixed resolution. Effects of different detector capabilities, including TOF (time-of-flight) resolution (320 ps, 500 ps, and non-TOF) and DOI (depth-of-interaction) resolution (4 mm, 10 mm, and no DOI), were evaluated. The results show that at a normal activity level (370 MBq), the 220 cm AFOV scanner offers a  ∼17-fold variance reduction for the 2 mm ROI and  ∼26-fold variance reduction for the 10 mm ROI (both measured at CRC  =  0.5) over the 22 cm AFOV scanner when both using detectors with 500 ps TOF resolution no DOI capability. The variance reduction factors of trues-only are higher than those of including scatters and randoms. Combining 320 ps TOF and 4 mm DOI, the 220 cm long scanner offers a  ∼45-fold variance reduction over the 22 cm long reference scanner (500 ps TOF, no DOI) for imaging 2 mm and 10 mm ROIs. The variance reduction factors are higher at a lower activity level due to lower random fraction. In conclusion, our study demonstrates that a long AFOV scanner can greatly improve the quantitative accuracy of PET imaging compared to current state-of-the-art clinical PET scanners
Regularization design in penalized maximum-likelihood image reconstruction for lesion detection in 3D PET
Detecting cancerous lesions is a major clinical application in emission tomography. In previous work, we have studied penalized maximum-likelihood (PML) image reconstruction for the detection task and proposed a method to design a shift-invariant quadratic penalty function to maximize detectability of a lesion at a known location in a two dimensional image. Here we extend the regularization design to maximize detectability of lesions at unknown locations in fully 3D PET. We used a multiview channelized Hotelling observer (mvCHO) to assess the lesion detectability in 3D images to mimic the condition where a human observer examines three orthogonal views of a 3D image for lesion detection. We derived simplified theoretical expressions that allow fast prediction of the detectability of a 3D lesion. The theoretical results were used to design the regularization in PML reconstruction to improve lesion detectability. We conducted computer-based Monte Carlo simulations to compare the optimized penalty with the conventional penalty for detecting lesions of various sizes. Only true coincidence events were simulated. Lesion detectability was also assessed by two human observers, whose performances agree well with that of the mvCHO. Both the numerical observer and human observer results showed a statistically significant improvement in lesion detection by using the proposed penalty function compared to using the conventional penalty function
- …