33 research outputs found

    The development of endomycorrhizal root systems VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots

    Get PDF
    Concentrations of phosphorus in shoot and soluble carbohydrates (fructose, glucose, sucrose and fructans) in root were measured in non-mycorrhizal and vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae) leek plants (Allium porrum) raised at six concentrations of soil phosphate. In conditions when an increased concentration of soil phosphate reduced VA mycorrhizal infection, the concentrations of soluble carbohydrates in the root were at a maximum. Therefore the hypothesis that greater concentrations of soluble carbohydrates in roots favour VA mycorrhizal infection is discounted. There was a specific effect of VA mycorrhizas, in that infected roots contained a larger concentration of sucrose than did uninfected roots, in plants with similar phosphorus concentrations in dry matter of shoots. We conclude, first, that increased phosphorus supply from either phosphate addition to soil or VA mycorrhizal infection increases concentration of soluble carbohydrates in leek roots and, secondly, that the VA mycorrhizal root behaves as a particularly strong physiological sink when there is an excess concentration of sucrose in the host

    Analysis of high-molecular-weight fructan polymers in crude plant extracts by high-resolution LC-MS

    Get PDF
    The main water-soluble carbohydrates in temperate forage grasses are polymeric fructans. Fructans consist of fructose chains of various chain lengths attached to sucrose as a core molecule. In grasses, fructans are a complex mixture of a large number of isomeric oligomers with a degree of polymerisation ranging from 3 to >100. Accurate monitoring and unambiguous peak identification requires chromatographic separation coupled to mass spectrometry. The mass range of ion trap mass spectrometers is limited, and we show here how monitoring selected multiply charged ions can be used for the detection and quantification of individual isomers and oligomers of high mass, particularly those of high degree of polymerization (DP > 20) in complex plant extracts. Previously reported methods using linear ion traps with low mass resolution have been shown to be useful for the detection of fructans with a DP up to 49. Here, we report a method using high-resolution mass spectrometry (MS) using an Exactive Orbitrap MS which greatly improves the signal-to-noise ratio and allows the detection of fructans up to DP = 100. High-sugar (HS) Lolium perenne cultivars with high concentrations of these fructans have been shown to be of benefit to the pastoral agricultural industry because they improve rumen nitrogen use efficiency and reduce nitrous oxide emissions from pastures. We demonstrate with our method that these HS grasses not only contain increased amounts of fructans in leaf blades but also accumulate fructans with much higher DP compared to cultivars with normal sugar levels

    Characterization of recombinant β-fructofuranosidase from Bifidobacterium adolescentis G1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported on purification and characterization of β-fructofuranosidase (β-FFase) from <it>Bifidobacterium adolescentis </it>G1. This enzyme showed high activity of hydrolysis on fructo-oligosaccharides with a low degree of polymerization. Recently, genome sequences of <it>B. longum </it>NCC2705 and <it>B. adolescentis </it>ATCC 15703 were determined, and <it>cscA </it>gene in the both genome sequences encoding β-FFase was predicted. Here, cloning of <it>cscA </it>gene encoding putative β-FFase from <it>B. adolescentis </it>G1, its expression in <it>E. coli </it>and properties of the recombinant protein are described.</p> <p>Results</p> <p>Using the information of <it>cscA </it>gene from <it>Bifidobacterium adolescentis </it>ATCC 15703, <it>cscA </it>gene from <it>B. adolescentis </it>G1 was cloned and sequenced. The N-terminal amino acid sequence of purified β-FFase from <it>B. adolescentis </it>G1 was identical to the deduced amino acid sequences of <it>cscA </it>gene from <it>B. adolescentis </it>G1. To confirm the translated product of the <it>cscA </it>gene, the recombinant protein was expressed in <it>Escherichia coli</it>. Molecular mass of the purified recombinant enzyme was estimated to be about 66,000 by SDS-PAGE and 60,300 by MALDI TOF-MS. The optimum pH of the enzyme was 5.7 and the enzyme was stable at pH 5.0-8.6. The thermostability of the enzyme was up to 50°C. The <it>K</it><sub>m </sub>(mM), <it>V</it><sub>max </sub>(μmol/mg of protein/min), <it>k</it><sub>0 </sub>(sec<sup>-1</sup>) and <it>k</it><sub>0</sub>/<it>K</it><sub>m</sub>(mM<sup>-1 </sup>sec<sup>-1</sup>) for 1-kestose, neokestose, nystose, fructosylnystose, sucrose and inulin were 1.7, 107, 107.5, 63.2, and 1.7, 142, 142.7, 83.9, and 3.9, 152, 152.8, 39.2, and 2.2, 75, 75.4, 34.3, and 38, 79, 79.4, 2.1, and 25.9, 77, 77.4, 3.0, respectively. The hydrolytic activity was strongly inhibited by AgNO<sub>3</sub>, SDS, and HgCl<sub>2</sub>.</p> <p>Conclusion</p> <p>The recombinant enzyme had similar specificity to the native enzyme, high affinity for 1-kestose, and low affinity for sucrose and inulin, although properties of the recombinant enzyme showed slight difference from those of the native one previously described.</p
    corecore