9,507 research outputs found
The Optimal Single Copy Measurement for the Hidden Subgroup Problem
The optimization of measurements for the state distinction problem has
recently been applied to the theory of quantum algorithms with considerable
successes, including efficient new quantum algorithms for the non-abelian
hidden subgroup problem. Previous work has identified the optimal single copy
measurement for the hidden subgroup problem over abelian groups as well as for
the non-abelian problem in the setting where the subgroups are restricted to be
all conjugate to each other. Here we describe the optimal single copy
measurement for the hidden subgroup problem when all of the subgroups of the
group are given with equal a priori probability. The optimal measurement is
seen to be a hybrid of the two previously discovered single copy optimal
measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe
Close Approach during Hard Binary--Binary Scattering
We report on an extensive series of numerical experiments of binary--binary
scattering, analysing the cross--section for close approach during interactions
for a range of hard binary parameters of interest in globular cluster cores. We
consider the implied rate for tidal interactions for different globular
clusters and compare our results with previous, complementary estimates of
stellar collision rates in globular clusters. We find that the collision rate
for binary--binary encounters dominates in low density clusters if the binary
fraction in the cluster is larger than for wide main--sequence binaries.
In dense clusters binary--single interactions dominate the collision rate and
the core binary fraction must be \ltorder 0.1 per decade in semi--major axis
or too many collisions take place compared to observations. The rates are
consistent if binaries with semi--major axes are overabundant in
low density clusters or if breakup and ejection substantially lowers the binary
fraction in denser clusters. Given reasonable assumptions about fractions of
binaries in the cores of low density clusters such as NGC~5053, we cannot
account for all the observed blue stragglers by stellar collisions during
binary encounters, suggesting a substantial fraction may be due to coalescence
of tight primordial binaries.Comment: 13 pages including 13 ps figures. MNRAS in pres
An optimal control approach to pilot/vehicle analysis and Neal-Smith criteria
The approach of Neal and Smith was merged with the advances in pilot modeling by means of optimal control techniques. While confirming the findings of Neal and Smith, a methodology that explicitly includes the pilot's objective in attitude tracking was developed. More importantly, the method yields the required system bandwidth along with a better pilot model directly applicable to closed-loop analysis of systems in any order
Coherence-Preserving Quantum Bits
Real quantum systems couple to their environment and lose their intrinsic
quantum nature through the process known as decoherence. Here we present a
method for minimizing decoherence by making it energetically unfavorable. We
present a Hamiltonian made up solely of two-body interactions between four
two-level systems (qubits) which has a two-fold degenerate ground state. This
degenerate ground state has the property that any decoherence process acting on
an individual physical qubit must supply energy from the bath to the system.
Quantum information can be encoded into the degeneracy of the ground state and
such coherence-preserving qubits will then be robust to local decoherence at
low bath temperatures. We show how this quantum information can be universally
manipulated and indicate how this approach may be applied to a quantum dot
quantum computer.Comment: 5 pages, 1 figur
The Determination of the Effective Resistance of a Spindle Supporting a Model Airfoil
An attempt was made to determine the effect of spindle interference on the lift of the airfoil by measuring moments about the axis parallel to the direction of air flow. The values obtained are of the same degree as the experimental error, and for the present this effect will be neglected. The results obtained using a U.S.A. 15 wing (plotted here) show that the correction is nearly constant from 0 degrees to 10 degrees incidence and that at greater angles its value becomes erratic. At such angles, however, the wing drag is so high that the spindle correction and its attendant errors become relatively small and unimportant
The Effect on Rudder Control of Slip Stream Body, and Ground Interference
This investigation was undertaken to determine the relative effects of those factors which may interfere with the rudder control of an airplane, with especial reference to the process of landing. It shows that ground interference is negligible, but that the effects of a large rounded body and of the slip stream may combine to interfere seriously with rudder control at low flying speeds and when taxiing
Adiabatic Gate Teleportation
The difficulty in producing precisely timed and controlled quantum gates is a
significant source of error in many physical implementations of quantum
computers. Here we introduce a simple universal primitive, adiabatic gate
teleportation, which is robust to timing errors and many control errors and
maintains a constant energy gap throughout the computation above a degenerate
ground state space. Notably this construction allows for geometric robustness
based upon the control of two independent qubit interactions. Further, our
piecewise adiabatic evolution easily relates to the quantum circuit model,
enabling the use of standard methods from fault-tolerance theory for
establishing thresholds.Comment: 4 pages, 1 figure, with additional 3 pages and 2 figures in an
appendix. v2 Refs added. Video abstract available at
http://www.quantiki.org/video_abstracts/0905090
- …