5 research outputs found
Hydrothermal vents and methane seeps: rethinking the sphere of influence
Although initially viewed as oases within a barren deep ocean, hydrothermal vents and methane seep chemosynthetic communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance of the systems from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by "benthic background" fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea: the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization
Primary Whole-gland Ablation for the Treatment of Clinically Localized Prostate Cancer: A Focal Therapy Society Best Practice Statement.
Whole-gland ablation is a feasible and effective minimally invasive treatment for localized prostate cancer (PCa). Previous systematic reviews supported evidence for favorable functional outcomes, but oncological outcomes were inconclusive owing to limited follow-up.
To evaluate the real-world data on the mid- to long-term oncological and functional outcomes of whole-gland cryoablation and high-intensity focused ultrasound (HIFU) in patients with clinically localized PCa, and to provide expert recommendations and commentary on these findings.
We performed a systematic review of PubMed, Embase, and Cochrane Library publications through February 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. As endpoints, baseline clinical characteristics, and oncological and functional outcomes were assessed. To estimate the pooled prevalence of oncological, functional, and toxicity outcomes, and to quantify and explain the heterogeneity, random-effect meta-analyses and meta-regression analyses were performed.
Twenty-nine studies were identified, including 14 on cryoablation and 15 on HIFU with a median follow-up of 72 mo. Most of the studies were retrospective (n = 23), with IDEAL (idea, development, exploration, assessment, and long-term study) stage 2b (n = 20) being most common. Biochemical recurrence-free survival, cancer-specific survival, overall survival, recurrence-free survival, and metastasis-free survival rates at 10 yr were 58%, 96%, 63%, 71-79%, and 84%, respectively. Erectile function was preserved in 37% of cases, and overall pad-free continence was achieved in 96% of cases, with a 1-yr rate of 97.4-98.8%. The rates of stricture, urinary retention, urinary tract infection, rectourethral fistula, and sepsis were observed to be 11%, 9.5%, 8%, 0.7%, and 0.8%, respectively.
The mid- to long-term real-world data, and the safety profiles of cryoablation and HIFU are sound to support and be offered as primary treatment for appropriate patients with localized PCa. When compared with other existing treatment modalities for PCa, these ablative therapies provide nearly equivalent intermediate- to long-term oncological and toxicity outcomes, as well as excellent pad-free continence rates in the primary setting. This real-world clinical evidence provides long-term oncological and functional outcomes that enhance shared decision-making when balancing risks and expected outcomes that reflect patient preferences and values.
Cryoablation and high-intensity focused ultrasound are minimally invasive treatments available to selectively treat localized prostate cancer, considering their nearly comparable intermediate- to long term cancer control and preservation of urinary continence to other radical treatments in the primary setting. However, a well-informed decision should be made based on one's values and preferences