59 research outputs found

    Journal of the American Chemical Society 125 46 14140 14148 United States

    No full text
    Palladium(0)-catalyzed reaction of allene-substituted allylic carboxylates 3-8 employing 2-5 mol % of Pd(dba)(2) in refluxing toluene leads to the carbocyclization and elimination of carboxylic acid to give bicyclo[4.3.0]nonadiene and bicyclo[5.3.0]decadiene derivatives (12-17). The carbon-carbon bond formation is stereospecific, occurring syn with respect to the leaving group. Addition of maleic anhydride as a ligand to the above-mentioned procedures changed the outcome of the reaction, and under these conditions 3-5 afforded cycloisomerized products 21-23. The experimental results are consistent with a mechanism involving oxidative addition of the allylic carboxylate to Pd(0) to give an electron-deficient (pi-allyl)palladium intermediate, followed by nucleophilic attack by the allene on the face of the pi-allyl opposite to that of the palladium atom. Furthermore, it was found that the Pd(dba)(2)-catalyzed cyclization of the trans-cycloheptene derivative (trans-8) can be directed to give either the trans-fused (trans-17) or the cis-fused (cis-17) ring system by altering the solvent. The former reaction proceeds via a nucleophilic trans-allene attack on the (pi-allyl)palladium intermediate, whereas the latter involves a syn-allene insertion into the allyl-Pd bond of the same intermediate. The products from the carbocylization undergo stereoselective Diels-Alder reactions to give stereodefined polycyclic systems in high yields

    In Situ Structural Determination of a Homogeneous Ruthenium Racemization Catalyst and Its Activated Intermediates Using X-Ray Absorption Spectroscopy

    Get PDF
    The activation process of a known Ru-catalyst, dicarbonyl(pentaphenylcyclopentadienyl)ruthenium chloride, has been studied in detail using time resolved in situ X-ray absorption spectroscopy. The data provide bond lengths of the species involved in the process as well as information about bond formation and bond breaking. On addition of potassium tert-butoxide, the catalyst is activated and an alkoxide complex is formed. The catalyst activation proceeds via a key acyl intermediate, which gives rise to a complete structural change in the coordination environment around the Ru atom. The rate of activation for the different catalysts was found to be highly dependent on the electronic properties of the cyclopentadienyl ligand. During catalytic racemization of 1-phenylethanol a fast-dynamic equilibrium was observed

    Chemistry (Weinheim an der Bergstrasse, Germany) 9 14 3445 3449 Germany

    No full text
    Reaction of allene-substituted cyclohexa- and cyclohepta-1,3-dienes with [PdCl(2)(PhCN)(2)] gave eta(3)-(1,2,3)-cyclohexenyl- and eta(3)-(1,2,3)-cycloheptenylpalladium complexes, respectively, in which C-C bond formation between the allene and the 1,3-diene has occurred. Analysis of the (pi-allyl)palladium complexes by NMR spectroscopy, using reporter ligands, shows that the C-C bond formation has occurred by a trans carbopalladation involving nucleophilic attack by the middle carbon atom of the allene on a (pi-diene)palladium(II) complex. The stereochemistry of the (pi-allyl)palladium complexes was confirmed by benzoquinone-induced stereoselective transformations to allylic acetates

    Toward understanding the catalytic synergy in the design of bimetallic molecular sieves for selective aerobic oxidations

    No full text
    Structure–property correlations and mechanistic implications are important in the design of single-site catalysts for the activation of molecular oxygen. In this study we rationalize trends in catalytic synergy to elucidate the nature of the active site through structural and spectroscopic correlations. In particular, the redox behavior and coordination geometry in isomorphously substituted, bimetallic VTiAlPO-5 catalysts are investigated with a view to specifically engineering and enhancing their reactivity and selectivity in aerobic oxidations. By using a combination of HYSCORE EPR and in situ FTIR studies, we show that the well-defined and isolated oxophilic tetrahedral titanium centers coupled with redox-active VO2+ ions at proximal framework positions provide the loci for the activation of oxidant that leads to a concomitant increase in catalytic activity compared to analogous monometallic systems

    One-pot synthesis of enantiopure syn-1,3-diacetates from racemic syn/anti mixtures of 1,3-diols by dynamic kinetic asymmetric transformation

    No full text
    A one-pot synthesis of enantiomerically pure syn-1,3-diacetates starting from readily accessible racemic diastereomeric mixtures of 1,3-diols has been realized by combining (i) enzymatic transesterification, (ii) ruthenium-catalyzed epimerization of a secondary alcohol in a diol or diol monoacetate, and (iii) intramolecular acyl migration in a syn-1,3-diol monoacetate. The in situ coupling of these three processes results in an efficient enantioselective synthesis of acyclic syn-1,3-diacetates via combined deracemization–deepimerization and constitutes a dynamic kinetic asymmetric transformation concept. Several differently substituted unsymmetrical, acyclic syn-1,3-diacetates were obtained in yields up to 73% with excellent enantioselectivities (>99%) and good diastereomeric ratios (>90% syn)
    • …
    corecore