4 research outputs found

    The ISB Cancer Genomics Cloud: A Flexible Cloud-Based Platform for Cancer Genomics Research.

    Get PDF
    The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.or

    Comprehensive molecular characterization of human colon and rectal cancer

    No full text
    To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase ε (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.National Institutes of Health (U.S.) (Grant U24CA143799)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143840)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143883)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U54HG003273
    corecore