17 research outputs found

    IgA-specific serine endopeptidase

    No full text

    Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction

    No full text
    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions

    No full text
    Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster (R)/B-PER (TM)), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (> 200-fold) or yADH (> 400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol

    An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis

    Full text link
    © 2018 Elsevier Inc. The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed “mouse kidney parvovirus” (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans. A kidney parvovirus found in multiple laboratory mouse colonies causes spontaneous nephropathy and represents a new tool for studying chronic kidney disease
    corecore