73 research outputs found
Magnetothermal properties of molecule-based materials
We critically review recent results obtained by studying the low-temperature
specific heat of some of the most popular molecular magnets. Perspectives of
this field are discussed as well.Comment: 12 pages text + 14 pages figures, Submitted as "feature article" to
Journal of Materials Chemistr
Emerging immunopharmacological targets in multiple sclerosis.
Inflammatory demyelination of the central nervous system (CNS) is the hallmark of multiple sclerosis (MS), a chronic debilitating disease that affects more than 2.5 million individuals worldwide. It has been widely accepted, although not proven, that the major pathogenic mechanism of MS involves myelin-reactive T cell activation in the periphery and migration into the CNS, which subsequently triggers an inflammatory cascade that leads to demyelination and axonal damage. Virtually all MS medications now in use target the immune system and prevent tissue damage by modulating neuroinflammatory processes. Although current therapies such as commonly prescribed disease-modifying medications decrease the relapse rate in relapsing-remitting MS (RRMS), the prevention of long-term accumulation of deficits remains a challenge. Medications used for progressive forms of MS also have limited efficacy. The need for therapies that are effective against disease progression continues to drive the search for novel pharmacological targets. In recent years, due to a better understanding of MS immunopathogenesis, new approaches have been introduced that more specifically target autoreactive immune cells and their products, thus increasing specificity and efficacy, while reducing potential side effects such as global immunosuppression. In this review we describe several immunopharmacological targets that are currently being explored for MS therapy
Silencing of germline-expressed genes by DNA elimination in somatic cells
SummaryChromatin diminution is the programmed elimination of specific DNA sequences during development. It occurs in diverse species, but the function(s) of diminution and the specificity of sequence loss remain largely unknown. Diminution in the nematode Ascaris suum occurs during early embryonic cleavages and leads to the loss of germline genome sequences and the formation of a distinct genome in somatic cells. We found that ∼43 Mb (∼13%) of genome sequence is eliminated in A. suum somatic cells, including ∼12.7 Mb of unique sequence. The eliminated sequences and location of the DNA breaks are the same in all somatic lineages from a single individual and between different individuals. At least 685 genes are eliminated. These genes are preferentially expressed in the germline and during early embryogenesis. We propose that diminution is a mechanism of germline gene regulation that specifically removes a large number of genes involved in gametogenesis and early embryogenesis
Tumor-Targeted Delivery of IL-2 by NKG2D Leads to Accumulation of Antigen-Specific CD8+ T Cells in the Tumor Loci and Enhanced Anti-Tumor Effects
Interleukin-2 (IL-2) has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein) or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci
Contrasting Alloreactive CD4 + and CD8 + T Cells: There's More to It Than MHC Restriction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73698/1/j.1600-6143.2003.00036.x.pd
The unfinished legacy of liver transplantation: Emphasis on immunology
Liver transplantation radically changed the philosophy of hepatology practice, enriched multiple areas of basic science, and had pervasive ripple effects in law, public policy, ethics, and theology. Why organ engraftment was feasible remained enigmatic, however, until the discovery in 1992 of donor leukocyte microchimerism in long-surviving liver, and other kinds of organ recipients. Following this discovery, the leukocyte chimerism-associated mechanisms were elucidated that directly linked organ and bone marrow transplantation and eventually clarified the relationship of transplantation immunology to the immunology of infections, neoplasms, and autoimmune disorders. We describe here how the initially controversial paradigm shift mandated revisions of cherished dogmas. With the fresh insight, the reasons for numerous inexplicable phenomena of transplantation either became obvious or have become susceptible to discriminate experimental testing. The therapeutic implications of the "new immunology" in hepatology and in other medical disciplines, have only begun to be explored. Apart from immunology, physiologic investigations of liver transplantation have resulted in the discovery of growth factors (beginning with insulin) that are involved in the regulation of liver size, ultrastructure, function, and the capacity for regeneration. Such studies have partially explained functional and hormonal relationships of different abdominal organs, and ultimately they led to the cure or palliation by liver transplantation of more than 2 dozen hepatic-based inborn errors of metabolism. Liver transplantation should not be viewed as a purely technologic achievement, but rather as a searchlight whose beams have penetrated the murky mist of the past, and continue to potentially illuminate the future. Copyright © 2006 by the American Association for the Study of Liver Diseases
Ex Vivo Expansion of Human CD8+ T Cells Using Autologous CD4+ T Cell Help
Background: Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model. Methods/Principal Findings: We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells. Conclusions: We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro
Ena/VASP proteins have an anti-capping independent function in filopodia formation
Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 2579-2591, doi:10.1091/mbc.E06-11-0990.Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actin–binding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.This work was supported in
part by National Institutes of Health Grants GM7542201 to D.A.A., GM58801
to F.B.G., and GM62431 to G.G.B. and by Cell Migration Consortium Grants
GM64346 to D.A.A and G.G.B
Strategies to Target Tumor Immunosuppression
The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity
The role of microenvironment and immunity in drug response in leukemia
Leukemia is a cancer of the white blood cells, with over 54,000 new cases per year diagnosed worldwide and a 5-year survival rate below 60%. This highlights a need for research into the mechanisms behind its etiology and causes of therapy failure. The bone marrow microenvironment, in which adult stem cells are maintained in healthy individuals, has been implicated as a source of chemoresistance and disease relapse. Here the various ways that the microenvironment can contribute to the resistance and persistence of leukemia are discussed. The targeting of the microenvironment by leukemia cells to create an environment more suitable for cancer progression is described. The role of soluble factors, drug transporters, microvesicles, as well as the importance of direct cell–cell contact, in addition to the effects of inflammation and immune surveillance in microenvironment-mediated drug resistance are discussed. An overview of the clinical potential of translating research findings to patients is also provided. Understanding of and further research into the role of the bone marrow microenvironment in leukemia progression and relapse are crucial towards developing more effective treatments and reduction in patient morbidity
- …