8,005 research outputs found

    Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints

    Full text link
    High polarization selective Si/SiO2 mid-infrared sub-wavelength grating mirrors with large bandwidth adapted to VCSEL integration are compared. These mirrors have been automatically designed for operation at \lambda = 2.3 Ό\mum by an optimization algorithm which maximizes a specially defined quality factor. Several technological constraints in relation with the grating manufacturing process have been imposed within the optimization algorithm and their impact on the optical properties of the mirror have been evaluated. Furthermore, through the tolerance computation of the different dimensions of the structure, the robustness with respect to fabrication errors has been tested. Finally, it appears that the increase of the optical performances of the mirror imposes a less tolerant design with severer technological constraints resulting in a more stringent control of the manufacturing process.Comment: The final publication is available at http://iopscience.iop.org/2040-8986/13/12/125502

    Economic inequalities in burden of illness, diagnosis and treatment of five long-term conditions in England: panel study

    Get PDF
    We compared the distribution by wealth of self-reported illness burden (estimated from validated scales, biomarker and reported symptoms) for angina, cataract, depression, diabetes and osteoarthritis, with the distribution of self-reported medical diagnosis and treatment. We aimed to determine if the greater illness burden borne by poorer participants was matched by appropriately higher levels of diagnosis and treatment

    Self-reported quality of care for older adults from 2004 to 2011: a cohort study

    Get PDF
    Background: little is known about changes in the quality of medical care for older adults over time. Objective: to assess changes in technical quality of care over 6 years, and associations with participants' characteristics. Design: a national cohort survey covering RAND Corporation-derived quality indicators (QIs) in face-to-face structured interviews in participants' households. Participants: a total of 5,114 people aged 50 or more in four waves of the English Longitudinal Study of Ageing. Methods: the percentage achievement of 24 QIs in 10 general medical and geriatric clinical conditions was calculated for each time point, and associations with participants' characteristics were estimated using logistic regression. Results: participants were eligible for 21,220 QIs. QI achievement for geriatric conditions (cataract, falls, osteoarthritis and osteoporosis) was 41% [95% confidence interval (CI): 38–44] in 2004–05 and 38% (36–39) in 2010–11. Achievement for general medical conditions (depression, diabetes mellitus, hypertension, ischaemic heart disease, pain and cerebrovascular disease) improved from 75% (73–77) in 2004–05 to 80% (79–82) in 2010–11. Achievement ranged from 89% for cerebrovascular disease to 34% for osteoarthritis. Overall achievement was lower for participants who were men, wealthier, infrequent alcohol drinkers, not obese and living alone. Conclusion: substantial system-level shortfalls in quality of care for geriatric conditions persisted over 6 years, with relatively small and inconsistent variations in quality by participants' characteristics. The relative lack of variation by participants' characteristics suggests that quality improvement interventions may be more effective when directed at healthcare delivery systems rather than individuals

    Disordered quantum wires: microscopic origins of the DMPK theory and Ohm's law

    Full text link
    We study the electronic transport properties of the Anderson model on a strip, modeling a quasi one-dimensional disordered quantum wire. In the literature, the standard description of such wires is via random matrix theory (RMT). Our objective is to firmly relate this theory to a microscopic model. We correct and extend previous work (arXiv:0912.1574) on the same topic. In particular, we obtain through a physically motivated scaling limit an ensemble of random matrices that is close to, but not identical to the standard transfer matrix ensembles (sometimes called TOE, TUE), corresponding to the Dyson symmetry classes \beta=1,2. In the \beta=2 class, the resulting conductance is the same as the one from the ideal ensemble, i.e.\ from TUE. In the \beta=1 class, we find a deviation from TOE. It remains to be seen whether or not this deviation vanishes in a thick-wire limit, which is the experimentally relevant regime. For the ideal ensembles, we also prove Ohm's law for all symmetry classes, making mathematically precise a moment expansion by Mello and Stone. This proof bypasses the explicit but intricate solution methods that underlie most previous results.Comment: Corrects and extends arXiv:0912.157

    Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy

    Full text link
    Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy (XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow of an object lying on a surface, may be used to gather information about the three-dimensional magnetization texture inside the object. Our purpose here is to lay the basis of a quantitative analysis of this technique. We first discuss the principle and implementation of a method to simulate the contrast expected from an arbitrary micromagnetic state. Text book examples and successful comparison with experiments are then given. Instrumental settings are finally discussed, having an impact on the contrast and spatial resolution : photon energy, microscope extraction voltage and plane of focus, microscope background level, electric-field related distortion of three-dimensional objects, Fresnel diffraction or photon scattering

    A simple quantum cosmology

    Get PDF
    A simple and surprisingly realistic model of the origin of the universe can be developed using the Friedmann equation from general relativity, elementary quantum mechanics, and the experimental values of h, c, G and the proton mass. The model assumes there are N space dimensions (with N > 6) and the potential constraining the radius r of the invisible N -3 compact dimensions varies as r^4. In this model, the universe has zero total energy and is created from nothing. There is no initial singularity. If space-time is eleven dimensional, as required by M theory, the scalar field corresponding to the size of the compact dimensions inflates the universe by about 26 orders of magnitude (60 e-folds). If the Hubble constant is 65 km/sec Mpc, the energy density of the scalar field after inflation results in Omega-sub-Lambda = 0.68, in agreement with recent astrophysical observations.Comment: To be published in General Relativity and Gravitation, August 200
    • 

    corecore