539 research outputs found

    Generating Functionals for Harmonic Expectation Values of Paths with Fixed End Points. Feynman Diagrams for Nonpolynomial Interactions

    Full text link
    We introduce a general class of generating functionals for the calculation of quantum-mechanical expectation values of arbitrary functionals of fluctuating paths with fixed end points in configuration or momentum space. The generating functionals are calculated explicitly for harmonic oscillators with time-dependent frequency, and used to derive a smearing formulas for correlation functions of polynomial and nonpolynomials functions of time-dependent positions and momenta. These formulas summarize the effect of thermal and quantum fluctuations, and serve to derive generalized Wick rules and Feynman diagrams for perturbation expansions of nonpolynomial interactions.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/28

    Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems

    Full text link
    We introduce a systematic classification method for the analogs of phase transitions in finite systems. This completely general analysis, which is applicable to any physical system and extends towards the thermodynamic limit, is based on the microcanonical entropy and its energetic derivative, the inverse caloric temperature. Inflection points of this quantity signal cooperative activity and thus serve as distinct indicators of transitions. We demonstrate the power of this method through application to the long-standing problem of liquid-solid transitions in elastic, flexible homopolymers.Comment: 4 pages, 3 figure

    Continuous wavelet transform ridge extraction for spectral interferometry imaging

    Get PDF
    The combination of wavelength multiplexing and spectral interferometry allows for the encoding of multidimensional information and its transmission over a mono-dimensional channel; for example, measurements of a surface's topography acquired through a monomode fiber in a small endoscope. The local depth of the imaged object is encoded in the local spatial frequency of the signal measured at the output of the fiber-decoder system. We propose a procedure to retrieve the depth-map by determining the signal's instantaneous frequency. First, we compute its continuous, complex-valued, wavelet transform (CWT). The frequency signature at every position is contained in the resulting scalogram. We then extract the ridge of maximal response by use of a dynamic programming algorithm thus directly recovering the object's topography. We present results that validate this procedure based on both simulated and experimental data

    Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography

    Get PDF
    AN APPEAL FROM A JUDGMENT AND DECREE OF DIVORCE OF THE THIRD JUDICIAL DISTRICT, SALT LAKE COUNTY, UTAH THE HONORABLE JOHN A. ROKICH JUDGE PRESIDING

    Recursive Graphical Construction for Feynman Diagrams of Quantum Electrodynamics

    Get PDF
    We present a method for a recursive graphical construction of Feynman diagrams with their correct multiplicities in quantum electrodynamics. The method is first applied to find all diagrams contributing to the vacuum energy from which all n-point functions are derived by functional differentiation with respect to electron and photon propagators, and to the interaction. Basis for our construction is a functional differential equation obeyed by the vacuum energy when considered as a functional of the free propagators and the interaction. Our method does not employ external sources in contrast to traditional approaches.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/29

    Analysis of X.500 Distributed Directory Refresh Strategies

    Full text link
    Distributed database directory refresh strategies, commonly recommended for the X.500 standard, are defined and analytically modeled for variations on push/pull and total/differential under idealistic asynchronous control conditions. The models are implemented in a HyperCard-based tool called DirMod (for "directory model"). Experimental test results show important elapsed time performance tradeoff among the different strategies, and live test data contribute to the verification of the models.http://deepblue.lib.umich.edu/bitstream/2027.42/107872/1/citi-tr-90-6.pd

    Continuous wavelet transform ridge extraction for spectral interferometry imaging

    Get PDF
    The combination of wavelength multiplexing and spectral interferometry allows for the encoding of multidimensional information and its transmission over a mono-dimensional channel; for example, measurements of a surface's topography acquired through a monomode fiber in a small endoscope. The local depth of the imaged object is encoded in the local spatial frequency of the signal measured at the output of the fiber-decoder system. We propose a procedure to retrieve the depth-map by determining the signal's instantaneous frequency. First, we compute its continuous, complex-valued, wavelet transform (CWT). The frequency signature at every position is contained in the resulting scalogram. We then extract the ridge of maximal response by use of a dynamic programming algorithm thus directly recovering the object's topography. We present results that validate this procedure based on both simulated and experimental data

    Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow

    Full text link
    Granular materials will segregate by particle size when subjected to shear, as occurs, for example, in avalanches. The evolution of a bidisperse mixture of particles can be modeled by a nonlinear first order partial differential equation, provided the shear (or velocity) is a known function of position. While avalanche-driven shear is approximately uniform in depth, boundary-driven shear typically creates a shear band with a nonlinear velocity profile. In this paper, we measure a velocity profile from experimental data and solve initial value problems that mimic the segregation observed in the experiment, thereby verifying the value of the continuum model. To simplify the analysis, we consider only one-dimensional configurations, in which a layer of small particles is placed above a layer of large particles within an annular shear cell and is sheared for arbitrarily long times. We fit the measured velocity profile to both an exponential function of depth and a piecewise linear function which separates the shear band from the rest of the material. Each solution of the initial value problem is non-standard, involving curved characteristics in the exponential case, and a material interface with a jump in characteristic speed in the piecewise linear case
    • …
    corecore