147 research outputs found

    Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin

    Get PDF
    Isoaspartate formation in extracellular matrix proteins, by aspartate isomerization or asparagine deamidation, is generally viewed as a degradation reaction occurring in vivo during tissue aging. For instance, non-enzymatic isoaspartate formation at RGD-integrin binding sites causes loss of cell adhesion sites, which in turn can be enzymatically "repaired" to RGD by protein-L-isoAsp-O- methyltransferase. We show here that isoaspartate formation is also a mechanism for extracellular matrix activation. In particular, we show that deamidation of Asn(263) at the Asn-Gly-Arg (NGR) site in fibronectin N-terminal region generates an alpha(v)beta(3)-integrin binding site containing the L-isoDGR sequence, which is enzymatically "deactivated" to DGR by protein-L-isoAsp-O-methyltransferase. Furthermore, rapid NGR-to-isoDGR sequence transition in fibronectin fragments generates alpha(v)beta(3) antagonists ( named "isonectins") that competitively bind RGD binding sites and inhibit endothelial cell adhesion, proliferation, and tumor growth. Time-dependent generation of isoDGR may represent a sort of molecular clock for activating latent integrin binding sites in proteins

    Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain.

    Get PDF
    Abstract Background Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. Methods We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. Results Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. Conclusions Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. General significance The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators

    Efficacy of Cannabidiol for Delta-9-Tetrahydrocannabinol-Induced Psychotic Symptoms, Schizophrenia, and Cannabis Use Disorders: A Narrative Review

    Get PDF
    Although cannabisā€™ major psychoactive component, āˆ†-9-tetrahydrocannabinol (THC), has been linked to both earlier onset and poorer outcomes of psychotic disorders, Cannabidiol (CBD) seems to have different pharmacological mechanisms and potential therapeutic properties. However, no clinical study has investigated CBD for the treatment of co-occurring psychotic and cannabis use disorders so far, even though its utility seems grounded in a plausible biological basis. The aim of this work is thus to provide an overview of available clinical studies evaluating the efficacy of CBD for psychotic symptoms induced by THC, schizophrenia, and cannabis use disorders. After searching for relevant studies in PubMed, Cochrane Library, and ClinicalTrials.gov, we included 10 clinical studies. Available evidence suggests that CBD may attenuate both psychotic-like symptoms induced by THC in healthy volunteers and positive symptoms in individuals with schizophrenia. In addition, preliminary data on the efficacy of CBD for cannabis use disorders show mixed findings. Evidence from ongoing clinical studies will provide insight into the possible role of CBD for treating psychotic and cannabis use disorders

    DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach

    Get PDF
    In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology

    Synapsin phosphorylation by SRC tyrosine kinase enhances SRC activity in synaptic vesicles.

    Get PDF
    Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin

    Metabolism of Stem and Progenitor Cells: Proper Methods to Answer Specific Questions

    Get PDF
    Stem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures. Notably, not only cellular metabolism describes a defined cellular phenotype, but experimental evidence now clearly indicate that also rewiring cells towards a particular cellular metabolism can drive their cellular phenotype and function accordingly. Cellular metabolism can be studied by both targeted and untargeted approaches. Targeted analyses focus on a subset of identified metabolites and on their metabolic fluxes. In addition, the overall assessment of the oxygen consumption rate (OCR) gives a measure of the overall cellular oxidative metabolism and mitochondrial function. Untargeted approach provides a large-scale identification and quantification of the whole metabolome with the aim to describe a metabolic fingerprinting. In this review article, we overview the methodologies currently available for the study of invitro stem cell metabolism, including metabolic fluxes, fingerprint analyses, and single-cell metabolomics. Moreover, we summarize available approaches for the study of in vivo stem cell metabolism. For all of the described methods, we highlight their specificities and limitations. In addition, we discuss practical concerns about the most threatening steps, including metabolic quenching, sample preparation and extraction. A better knowledge of the precise metabolic signature defining specific cell population is instrumental to the design of novel therapeutic strategies able to drive undifferentiated stem cells towards a selective and valuable cellular phenotype

    Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells

    Get PDF
    Myocyte enhancer factor 2 (MEF2) proteins play a key role in promoting the expression of muscle-specific genes in differentiated muscle cells. MEF2 activity is regulated by the association with several transcriptional co-factors and by post-translational modifications. In the present report, we provide evidence for a novel regulatory mechanism of MEF2C activity, which occurs at the onset of skeletal muscle differentiation and is based on Lys4 acetylation. This covalent modification results in the enhancement of MEF2C binding to DNA and chromatin. In particular, we report that the kinetic parameters of MEF2/DNA association change substantially upon induction of differentiation to give a more stable complex and that this effect is mediated by Lys4 acetylation. We also show that Lys4 acetylation plays a prominent role in the p300-dependent activation of MEF2C

    Prion Protein Paralog Doppel Protein Interacts with Alpha-2-Macroglobulin: A Plausible Mechanism for Doppel-Mediated Neurodegeneration

    Get PDF
    Doppel protein (Dpl) is a paralog of the cellular form of the prion protein (PrPC), together sharing common structural and biochemical properties. Unlike PrPC, which is abundantly expressed throughout the central nervous system (CNS), Dpl protein expression is not detectable in the CNS. Interestingly, its ectopic expression in the brain elicits neurodegeneration in transgenic mice. Here, by combining native isoelectric focusing plus non-denaturing polyacrylamide gel electrophoresis and mass spectrometry analysis, we identified two Dpl binding partners: rat alpha-1-inhibitor-3 (Ī±1I3) and, by sequence homology, alpha-2-macroglobulin (Ī±2M), two known plasma metalloproteinase inhibitors. Biochemical investigations excluded the direct interaction of PrPC with either Ī±1I3 or Ī±2M. Nevertheless, enzyme-linked immunosorbent assays and surface plasmon resonance experiments revealed a high affinity binding occurring between PrPC and Dpl. In light of these findings, we suggest a mechanism for Dpl-induced neurodegeneration in mice expressing Dpl ectopically in the brain, linked to a withdrawal of natural inhibitors of metalloproteinase such as Ī±2M. Interestingly, Ī±2M has been proven to be a susceptibility factor in Alzheimer's disease, and as our findings imply, it may also play a relevant role in other neurodegenerative disorders, including prion diseases

    SMARCA5 interacts with NUP98-NSD1 oncofusion protein and sustains hematopoietic cells transformation

    Get PDF
    BACKGROUND: Acute myeloid leukemia (AML) is characterized by accumulation of aberrantly differentiated hematopoietic myeloid progenitor cells. The karyotyping-silent NUP98-NSD1 fusion is a molecular hallmark of pediatric AML and is associated with the activating FLT3-ITD mutation in &gt;ā€‰70% of the cases. NUP98-NSD1 fusion protein promotes myeloid progenitor self-renewal in mice via unknown molecular mechanism requiring both the NUP98 and the NSD1 moieties.METHODS: We used affinity purification coupled to label-free mass spectrometry (AP-MS) to examine the effect of NUP98-NSD1 structural domain deletions on nuclear interactome binding. We determined their functional relevance in NUP98-NSD1 immortalized primary murine hematopoietic stem and progenitor cells (HSPC) by inducible knockdown, pharmacological targeting, methylcellulose assay, RT-qPCR analysis and/or proximity ligation assays (PLA). Fluorescence recovery after photobleaching and b-isoxazole assay were performed to examine the phase transition capacity of NUP98-NSD1 in vitro and in vivo.RESULTS: We show that NUP98-NSD1 core interactome binding is largely dependent on the NUP98 phenylalanine-glycine (FG) repeat domains which mediate formation of liquid-like phase-separated NUP98-NSD1 nuclear condensates. We identified condensate constituents including imitation switch (ISWI) family member SMARCA5 and BPTF (bromodomain PHD finger transcription factor), both members of the nucleosome remodeling factor complex (NURF). We validated the interaction with SMARCA5 in NUP98-NSD1+ patient cells and demonstrated its functional role in NUP98-NSD1/FLT3-ITD immortalized primary murine hematopoietic cells by genetic and pharmacological targeting. Notably, SMARCA5 inhibition did not affect NUP98-NSD1 condensates suggesting that functional activity rather than condensate formation per se is crucial to maintain the transformed phenotype.CONCLUSIONS: NUP98-NSD1 interacts and colocalizes on the genome with SMARCA5 which is an essential mediator of the NUP98-NSD1 transformation in hematopoietic cells. Formation of NUP98-NSD1 phase-separated nuclear condensates is not sufficient for the maintenance of transformed phenotype, which suggests that selective targeting of condensate constituents might represent a new therapeutic strategy for NUP98-NSD1 driven AML.</p
    • ā€¦
    corecore