11 research outputs found

    Chlorocatechol Detection Based on a clc

    No full text

    Nanoparticle-Mediated Remote Control of Enzymatic Activity

    No full text
    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HAD(ST). This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe(3)O(4) nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields

    Environmental PCBs in Guánica Bay, Puerto Rico: implications for community health

    No full text
    Guánica Bay, located in southwestern Puerto Rico, has suffered oil spills and other pollution discharges since the 1960s. Previous research showed elevated concentrations of polychlorinated biphenyls (PCBs) in coral reef and sediment. This research examined PCB concentrations in sediment and fish. Sediment and fish sampling in the bay was facilitated by community members. This study identified the second highest reported PCB level (129,300 ng/g) in sediment in the United States. Fish samples also showed elevated concentrations (1,623ng/g to 3,768 ng/g), which were higher than the thresholds of safe levels of PCBs in fish for human consumption. The alarmingly high concentration of PCBs calls for proactive community engagement to bring awareness about contamination of the bay and more extensive sampling to test for the concentration PCBs in seafood and the people of Guánica. This study also underscores the value of the involvement of local communities during sampling design aimed at identifying hot spots of contaminants

    Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules

    No full text
    This work demonstrates the development of microfluidic compact discs (CDs) for protein purification and fractionation integrating a series of microfluidic features, such as microreservoirs, microchannels, and microfluidic fractionators. The CDs were fabricated with polydimethylsiloxane (PDMS), and each device contained multiple identical microfluidic patterns. Each pattern employed a microfluidic fractionation feature with operation that was based on the redirection of fluid into an isolation chamber as a result of an overflow. This feature offers the advantage of automated operation without the need for any external manipulation, which is independent of the size and the charge of the fractionated molecules. The performance of the microfluidic fractionator was evaluated by its integration into a protein purification microfluidic architecture. The microfluidic architecture employed a microchamber that accommodated a monolithic microcolumn, the fractionator, and an isolation chamber, which was also utilized for the optical detection of the purified protein. The monolithic microcolumn was polymerized "in situ" on the CD from a monolith precursor solution by microwave-initiated polymerization. This technique enabled the fast, efficient, and simultaneous polymerization of monoliths on disposable CD microfluidic platforms. The design of the CD employed allows the integration of various processes on a single microfluidic device, including protein purification, fractionation, isolation, and detection.close91
    corecore