6 research outputs found
Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method
It is well-known from unrestricted Hartree-Fock computations that the 2D
Hubbard model does not have homogeneous mean field states in significant
regions of parameter space away from half filling. This is incompatible with
standard mean field theory. We present a simple extension of the mean field
method that avoids this problem. As in standard mean field theory, we restrict
Hartree-Fock theory to simple translation invariant states describing
antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use
an improved method to implement the doping constraint allowing us to detect
when a phase separated state is energetically preferred, e.g. AF and F
coexisting at the same time. We find that such mixed phases occur in
significant parts of the phase diagrams, making them much richer than the ones
from standard mean field theory. Our results for the 2D t-t'-U Hubbard model
demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure
