8,721 research outputs found
Two-site dynamical mean field theory for the dynamic Hubbard model
At zero temperature, two-site dynamical mean field theory is applied to the
Dynamic Hubbard model. The Dynamic Hubbard model describes the orbital
relaxation that occurs when two electrons occupy the same site, by using a
two-level boson field at each site. At finite boson frequency, the appearance
of a Mott gap is found to be enhanced even though it shows a metallic phase
with the same bare on-site interaction in the conventional Hubbard model.
The lack of electron-hole symmetry is highlighted through the quasi-particle
weight and the single particle density of states at different fillings, which
qualitatively differentiates the dynamic Hubbard model from other conventional
Hubbard-like models.Comment: 13 pages, 15 figure
WHIZARD 2.2 for Linear Colliders
We review the current status of the WHIZARD event generator. We discuss, in
particular, recent improvements and features that are relevant for simulating
the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear
Colliders (LCWS13), Tokyo, Japan, 11-15 November 201
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a
spin-1/2 electron in the standard model of non-relativistic QED. We study the
Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum.
For small enough values of the fine-structure constant, we prove that the
ground state is unique. This result reflects the hyperfine structure of the
hydrogen atom ground state.Comment: 22 pages, 3 figure
Exponential localization of hydrogen-like atoms in relativistic quantum electrodynamics
We consider two different models of a hydrogenic atom in a quantized
electromagnetic field that treat the electron relativistically. The first one
is a no-pair model in the free picture, the second one is given by the
semi-relativistic Pauli-Fierz Hamiltonian. We prove that the no-pair operator
is semi-bounded below and that its spectral subspaces corresponding to energies
below the ionization threshold are exponentially localized. Both results hold
true, for arbitrary values of the fine-structure constant, , and the
ultra-violet cut-off, , and for all nuclear charges less than the
critical charge without radiation field, . We obtain
similar results for the semi-relativistic Pauli-Fierz operator, again for all
values of and and for nuclear charges less than .Comment: 37 page
Kramers degeneracy theorem in nonrelativistic QED
Degeneracy of the eigenvalues of the Pauli-Fierz Hamiltonian with spin 1/2 is
proven by the Kramers degeneracy theorem. The Pauli-Fierz Hamiltonian at fixed
total momentum is also investigated.Comment: LaTex, 11 page
Ground State and Resonances in the Standard Model of Non-relativistic QED
We prove existence of a ground state and resonances in the standard model of
the non-relativistic quantum electro-dynamics (QED). To this end we introduce a
new canonical transformation of QED Hamiltonians and use the spectral
renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
QCD NLO with Powheg matching and top threshold matching in WHIZARD
We present the status of the automation of NLO processes within the event
generator WHIZARD. The program provides an automated FKS subtraction and phase
space integration over the FKS regions, while the (QCD) NLO matrix element is
accessed via the Binoth Les Houches Interface from an externally linked
one-loop program. Massless and massive test cases and validation are shown for
several e+e- processes. Furthermore, we discuss work in progress and future
plans. The second part covers the matching of the NRQCD prediction with NLL
threshold resummation to the NLO continuum top pair production at lepton
colliders. Both the S-wave and P-wave production of the top pair are taken into
account in the resummation. The inclusion in WHIZARD allows to study more
exclusive observables than just the total cross section and automatically
accounts for important electroweak and relativistic corrections in the
threshold region.Comment: 9 pages, 3 figures, Talk given at 12th International Symposium on
Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections
for the LHC and Future Colliders); v2: reference adde
Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration
Uniqueness of the ground state in the Feshbach renormalization analysis
In the operator theoretic renormalization analysis introduced by Bach,
Froehlich, and Sigal we prove uniqueness of the ground state.Comment: 10 page
SUPPLY RESPONSE, DEMAND AND STOCKS FOR SOUTHERN AFRICAN BEEF
Livestock Production/Industries,
- …