8 research outputs found

    The nested SU(N) off-shell Bethe ansatz and exact form factors

    Get PDF
    The form factor equations are solved for an SU(N) invariant S-matrix under the assumption that the anti-particle is identified with the bound state of N-1 particles. The solution is obtained explicitly in terms of the nested off-shell Bethe ansatz where the contribution from each level is written in terms of multiple contour integrals.Comment: This work is dedicated to the 75th anniversary of H. Bethe's foundational work on the Heisenberg chai

    Potts correlators and the static three-quark potential

    No full text
    We discuss the two- and three-point correlators in the two-dimensional three-state Potts model in the high-temperature phase of the model. By using the form factor approach and perturbed conformal field theory methods we are able to describe both the large distance and the short distance behaviours of the correlators. We compare our predictions with a set of high precision Monte-Carlo simulations (performed on the triangular lattice realization of the model) finding a complete agreement in both regimes. In particular we use the two-point correlators to fix the various non-universal constants involved in the comparison (whose determination is one of the results of our analysis) and then use these constants to compare numerical results and theoretical predictions for the three-point correlator with no free parameter. Our results can be used to shed some light on the behaviour of the three-quark correlator in the confining phase of the (2+1)-dimensional SU(3) lattice gauge theory which is related by dimensional reduction to the three-spin correlator in the high-temperature phase of the three-state Potts model. The picture which emerges is that of a smooth crossover between a \Delta type law at short distances and a Y type law at large distances
    corecore