762 research outputs found
Marfan syndrome and pregnancy: maternal and neonatal outcomes
Objective
To report outcomes in a recent series of pregnancies in women with Marfan syndrome (MFS).
Design
Retrospective case note review.
Setting
Tertiary referral unit (Chelsea and Westminster and Royal Brompton Hospitals).
Sample
Twenty-nine pregnancies in 21 women with MFS between 1995 and 2010.
Methods
Multidisciplinary review of case records.
Main outcome measures
Maternal and neonatal mortality and morbidity of patients with MFS and healthy controls.
Results
There were no maternal deaths. Significant cardiac complications occurred in five pregnancies (17%): one woman experienced a type–A aortic dissection; two women required cardiac surgery within 6 months of delivery; and a further two women developed impaired left ventricular function during the pregnancy. Women with MFS were also more likely to have obstetric complications (OR 3.29, 95% CI 1.30–8.34), the most frequent of which was postpartum haemorrhage (OR 8.46, 95% CI 2.52–28.38). There were no perinatal deaths, although babies born to mothers with MFS were delivered significantly earlier than those born to the control group (median 39 versus 40 weeks of gestation, Mann–Whitney U–test, P = 0.04). These babies were also significantly more likely to be small for gestational age (24% in the MFS group versus 6% in the controls; OR 4.95, 95% CI 1.58–15.55).
Conclusions
Pregnancy in women with MFS continues to be associated with significant rates of maternal, fetal, and neonatal complications. Effective pre-pregnancy counselling and meticulous surveillance during pregnancy, delivery, and the puerperium by an experienced multidisciplinary team are warranted for women with MFS
Gauged Flavor Group with Left-Right Symmetry
We construct an anomaly-free extension of the left-right symmetric model,
where the maximal flavor group is gauged and anomaly cancellation is guaranteed
by adding new vectorlike fermion states. We address the question of the lowest
allowed flavor symmetry scale consistent with data. Because of the mechanism
recently pointed out by Grinstein et al. tree-level flavor changing neutral
currents turn out to play a very weak constraining role. The same occurs, in
our model, for electroweak precision observables. The main constraint turns out
to come from WR-mediated flavor changing neutral current box diagrams,
primarily K - Kbar mixing. In the case where discrete parity symmetry is
present at the TeV scale, this constraint implies lower bounds on the mass of
vectorlike fermions and flavor bosons of 5 and 10 TeV respectively. However,
these limits are weakened under the condition that only SU(2)_R x U(1)_{B-L} is
restored at the TeV scale, but not parity. For example, assuming the SU(2)
gauge couplings in the ratio gR/gL approx 0.7 allows the above limits to go
down by half for both vectorlike fermions and flavor bosons. Our model provides
a framework for accommodating neutrino masses and, in the parity symmetric
case, provides a solution to the strong CP problem. The bound on the lepton
flavor gauging scale is somewhat stronger, because of Big Bang Nucleosynthesis
constraints. We argue, however, that the applicability of these constraints
depends on the mechanism at work for the generation of neutrino masses.Comment: 1+23 pages, 1 table, 5 figures. v3: some more textual fixes (main
change: discussion of Lepton Flavor Violating observables rephrased). Matches
journal versio
Regulatory T Cells in Human Lymphatic Filariasis: Stronger Functional Activity in Microfilaremics
Infection with filarial parasites is associated with T cell hyporesponsiveness, which is thought to be partly mediated by their ability to induce regulatory T cells (Tregs) during human infections. This study investigates the functional capacity of Tregs from different groups of filarial patients to suppress filaria-specific immune responses during human filariasis. Microfilaremic (MF), chronic pathology (CP) and uninfected endemic normal (EN) individuals were selected in an area endemic for Brugia timori in Flores island, Indonesia. PBMC were isolated, CD4CD25hi cells were magnetically depleted and in vitro cytokine production and proliferation in response to B. malayi adult worm antigen (BmA) were determined in total and Treg-depleted PBMC. In MF subjects BmA-specific T and B lymphocyte proliferation as well as IFN-gamma, IL-13 and IL-17 responses were lower compared to EN and CP groups. Depletion of Tregs restored T cell as well as B cell proliferation in MF-positives, while proliferative responses in the other groups were not enhanced. BmA-induced IL-13 production was increased after Treg removal in MF-positives only. Thus, filaria-associated Tregs were demonstrated to be functional in suppressing proliferation and possibly Th2 cytokine responses to BmA. These suppressive effects were only observed in the MF group and not in EN or CP. These findings may be important when considering strategies for filarial treatment and the targeted prevention of filaria-induced lymphedema
Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses
Background Monocytes and macrophages contribute to the dysfunction of immune
responses in human filariasis. During patent infection monocytes encounter
microfilariae in the blood, an event that occurs in asymptomatically infected
filariasis patients that are immunologically hyporeactive. Aim To determine
whether blood microfilariae directly act on blood monocytes and in vitro
generated macrophages to induce a regulatory phenotype that interferes with
innate and adaptive responses. Methodology and principal findings Monocytes
and in vitro generated macrophages from filaria non-endemic normal donors were
stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could
show that monocytes stimulated with Mf lysate develop a defined regulatory
phenotype, characterised by expression of the immunoregulatory markers IL-10
and PD-L1. Significantly, this regulatory phenotype was recapitulated in
monocytes from Wuchereria bancrofti asymptomatically infected patients but not
patients with pathology or endemic normals. Monocytes from non-endemic donors
stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and
cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by
neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate
expressed high levels of IL-10 and had suppressed phagocytic abilities.
Finally Mf lysate applied during the differentiation of macrophages in vitro
interfered with macrophage abilities to respond to subsequent LPS stimulation
in a selective manner. Conclusions and significance Conclusively, our study
demonstrates that Mf lysate stimulation of monocytes from healthy donors in
vitro induces a regulatory phenotype, characterized by expression of PD-L1 and
IL-10. This phenotype is directly reflected in monocytes from filarial
patients with asymptomatic infection but not patients with pathology or
endemic normals. We suggest that suppression of T cell functions typically
seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in
an IL-10-dependent manner. Together with suppression of macrophage innate
responses, this may contribute to the overall down-regulation of immune
responses observed in asymptomatically infected patients
The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo
Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections
How Ubiquitin Unfolds after Transfer into the Gas Phase
The structural evolution of ubiquitin after transfer into the gas phase was studied by electron capture dissociation. Site-specific fragment yields show that ubiquitin’s solution fold is overall unstable in the gas phase, but unfolding caused by loss of solvent is slowest in regions stabilized by salt bridges
Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease
Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins
Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants
Glucose challenge increases circulating progenitor cells in Asian Indian male subjects with normal glucose tolerance which is compromised in subjects with pre-diabetes: A pilot study
<p>Abstract</p> <p>Background</p> <p>Haematopoietic stem cells undergo mobilization from bone marrow to blood in response to physiological stimuli such as ischemia and tissue injury. The aim of study was to determine the kinetics of circulating CD34<sup>+ </sup>and CD133<sup>+</sup>CD34<sup>+ </sup>progenitor cells in response to 75 g glucose load in subjects with normal and impaired glucose metabolism.</p> <p>Methods</p> <p>Asian Indian male subjects (n = 50) with no prior history of glucose imbalance were subjected to 2 hour oral glucose tolerance test (OGTT). 24 subjects had normal glucose tolerance (NGT), 17 subjects had impaired glucose tolerance (IGT) and 9 had impaired fasting glucose (IFG). The IGT and IFG subjects were grouped together as pre-diabetes group (n = 26). Progenitor cell counts in peripheral circulation at fasting and 2 hour post glucose challenge were measured using direct two-color flow cytometry.</p> <p>Results</p> <p>The pre-diabetes group was more insulin resistant (p < 0.0001) as measured by homeostasis assessment model (HOMA-IR) compared to NGT group. A 2.5-fold increase in CD34<sup>+ </sup>cells (p = 0.003) and CD133<sup>+</sup>CD34<sup>+ </sup>(p = 0.019) cells was seen 2 hours post glucose challenge in the NGT group. This increase for both the cell types was attenuated in subjects with IGT. CD34<sup>+ </sup>cell counts in response to glucose challenge inversely correlated with neutrophil counts (ρ = -0.330, p = 0.019), while post load counts of CD133<sup>+</sup>CD34<sup>+ </sup>cells inversely correlated with serum creatinine (ρ = -0.312, p = 0.023).</p> <p>Conclusion</p> <p>There is a 2.5-fold increase in the circulating levels of haematopoietic stem cells in response to glucose challenge in healthy Asian Indian male subjects which is attenuated in subjects with pre-diabetes.</p
Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light
Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms
- …