11,947 research outputs found

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    Data-free parameter pruning for Deep Neural Networks

    Full text link
    Deep Neural nets (NNs) with millions of parameters are at the heart of many state-of-the-art computer vision systems today. However, recent works have shown that much smaller models can achieve similar levels of performance. In this work, we address the problem of pruning parameters in a trained NN model. Instead of removing individual weights one at a time as done in previous works, we remove one neuron at a time. We show how similar neurons are redundant, and propose a systematic way to remove them. Our experiments in pruning the densely connected layers show that we can remove upto 85\% of the total parameters in an MNIST-trained network, and about 35\% for AlexNet without significantly affecting performance. Our method can be applied on top of most networks with a fully connected layer to give a smaller network.Comment: BMVC 201

    Image Denoising via CNNs: An Adversarial Approach

    Full text link
    Is it possible to recover an image from its noisy version using convolutional neural networks? This is an interesting problem as convolutional layers are generally used as feature detectors for tasks like classification, segmentation and object detection. We present a new CNN architecture for blind image denoising which synergically combines three architecture components, a multi-scale feature extraction layer which helps in reducing the effect of noise on feature maps, an l_p regularizer which helps in selecting only the appropriate feature maps for the task of reconstruction, and finally a three step training approach which leverages adversarial training to give the final performance boost to the model. The proposed model shows competitive denoising performance when compared to the state-of-the-art approaches
    corecore