5,094 research outputs found
Growth rate of YBCO single grains containing Y-2411(M)
Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials
Characterization of nano-composite M-2411/Y-123 thin films by electron backscatter diffraction and in-field critical current measurements
Thin films of nano-composite Y-Ba-Cu-O (YBCO) superconductors containing nano-sized, non-superconducting particles of Y2Ba 4CuMOx (M-2411 with M = Ag and Nb) have been prepared by the PLD technique. Electron backscatter diffraction (EBSD) has been used to analyze the crystallographic orientation of nano-particles embedded in the film microstructure. The superconducting YBa2Cu3O7 (Y-123) phase matrix is textured with a dominant (001) orientation for all samples, whereas the M-2411 phase exhibits a random orientation. Angular critical current measurements at various temperature (T) and applied magnetic field (B) have been performed on thin films containing different concentration of the M-2411 second phase. An increase in critical current density J c at T < 77 K and B < 6 T is observed for samples with low concentration of the second phase (2 mol % M-2411). Films containing 5 mol % Ag-2411 exhibit lower Jc than pure Y-123 thin films at all fields and temperatures. Samples with 5 mol % Nb-2411 show higher Jc(B) than phase pure Y-123 thin films for T < 77 K
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
Eliminating the d=5 proton decay operators from SUSY GUTs
A general analysis is made of the question whether the d=5 proton decay
operators coming from exchange of colored Higgsinos can be completely
eliminated in a natural way in supersymmetric grand unified models. It is shown
that they can indeed be in SO(10) while at the same time naturally solving the
doublet-triplet splitting problem, having only two light Higgs doublets, and
using no more than a single adjoint Higgs field. Accomplishing all of this
requires that the vacuum expectation value of the adjoint Higgs field be
proportional to the generator I_{3R} rather than to B-L, as is usually assumed.
It is shown that such models can give realistic quark and lepton masses. We
also point out a new mechanism for solving the \mu problem in the context of
SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure
Discrete Wavelet Transform based Cryptosystem
In this article, the authors proposed, implemented and analysed a symmetric key cryptographic algorithm that can be considered as a lossless encryption and decryption technique, advantageous especially in situations where, even a slight marginal distortion is not tolerable. In the proposed system, Haar wavelet is used initially, to transform the original target image into its frequency domain, followed by encrypting the resulting sub-bands, so as to obtain a secure and reliable encrypted image. The resulting coefficients after Haar decomposition is scattered using a reversible weighing factor, suitably reversed and swapped to get the secure encrypted image. The encrypted image is then correspondingly decrypted, by the reverse process to get back the original decrypted image. Statistical testing and security methods were used to evaluate and analyse the proposed cryptosystem and the results showed that the proposed system is cryptographically resistant to attacks and is also highly secure when compared to other cryptographic systems in the frequency domain
Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)
Enhanced self-field critical current density of nano-composite YBa(2)Cu(3)O(7) thin films grown by pulsed-laser deposition
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ EPLA, 2008.Enhanced self-field critical current density Jc of novel, high-temperature superconducting thin films is reported. Layers are deposited on (001) MgO substrates by laser ablation of YBa2Cu3O7−δ(Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag, Nb, Ru, Zr) nano-particles. The Jc of films depends on the secondary-phase content of the ceramic targets, which was varied between 0 and 15 mol%. Composite layers (2 mol% of Ag-2411 and Nb-2411) exhibit Jc values at 77 K of up to 5.1 MA/cm2, which is 3 to 4 times higher than those observed in films deposited from phase pure Y-123 ceramics. Nb-2411 grows epitaxially in the composite layers and the estimated crystallite size is ~10 nm.The Austrian Science Fund, the Austrian Federal Ministry of Economics and Labour, the European Science Foundation and the Higher Education Commission of Pakistan
Analysis of Regenerative System in Steam Power Plant
The development of any country directly relates on capital energy consumption. The demand for power generation on the large scale is increasing day by day. Owing to their major contribution towards power production, thermal power plants have a vital role to play in the development of nation. Due to the scarcity of power, every power plant needs to be operated at maximum level of efficiency. In case of thermal power plants this applies equally to all its auxiliaries. The feed water heaters form a part of the regenerative system to increase the overall thermal efficiency of the plant. In the operation and maintenance of a power plant the feed water heaters are virtually neglected compared with other components. To realize the effect of feed water heating and an attempt is made in this project work to find the improvement in cycle efficiency due to FWH.nbs
Getting the Supersymmetric Unification Scale from Quantum Confinement with Chiral Symmetry Breaking
Two models which generate the supersymmetric Grand Unification Scale from the
strong dynamics of an additional gauge group are presented. The particle
content is chosen such that this group confines with chiral symmetry breaking.
Fields that are usually introduced to break the Grand Unified group appear
instead as composite degrees of freedom and can acquire vacuum expectation
values due to the confining dynamics. The models implement known solutions to
the doublet-triplet splitting problem. The SO(10) model only requires one
higher dimensional representation, an adjoint. The dangerous coloured
Higgsino-mediated proton decay operator is naturally suppressed in this model
to a phenomenologically interesting level. Neither model requires the presence
of gauge singlets. Both models are only technically natural.Comment: LaTex, 23 page
A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing
It is proposed that all flavor mixing is caused by the mixing of the three
quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of
SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are
generated by a single matrix. The entire 3-by-3 complex mass matrix of the
neutrinos M_{nu} is then found to have a simple expression in terms of two
complex parameters and an overall scale. Thus, all the presently unknown
neutrino parameters are predicted. The best fits are for theta_{atm} less than
or approximately 40 degrees. The leptonic Dirac CP phase is found to be
somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte
- …