19 research outputs found

    Influence of tillage practices and crop diversification on productivity and soil health in maize (Zea mays)/soybean (Glycine max) based cropping systems

    Get PDF
    A field experiment was conducted at New Delhi during 2010–12 to find-out the influence of tillage practices and cropping systems on crop productivity and soil health in maize (Zea mays L.)/soybean (Glycine max L.) based cropping systems. Results revealed that minimum tillage with crop residue mulch improved the yield of component crops by 5–22% as well as system productivity by 5.4–7.1% in current study. The effect of minimum tillage on crop yields was more pronounced among summer season crops followed by winter season crops. Soil organic carbon (SOC) and available NPK as well as S exhibited marked improvement due to minimum tillage over conventional tillage. Soil pH and soil physical properties revealed favourable effects of minimum tillage over initial status. On an average, maize/soybean grown after summer greengram observed about 10–12% increase in yield than grown after spring sunflower. Winter season wheat, coriander, fenugreek, vegetable pea and potato exhibited 10.4, 6.9, 3.8, 6 and 11% higher yield after soybean compared to their respective yields after maize. Yield of spring sunflower in soybean– vegetable pea–sunflower system was 18 and 11% higher than its yield in maize–potato–sunflower and maize– vegetable pea–sunflower systems, respectively. The productivity of soybean based cropping systems was higher than that of maize based systems. With intervention of vegetable pea and potato during winter and sunflower during spring; the productivity of maize/soybean–vegetable pea/potato–sunflower systems was enhanced by 128% over maize/soybean–wheat–greengram systems. Similarly, replacement of wheat with coriander in maize/soybean–wheat– greengram system also improved the system productivity markedly. Diversified soybean–fenugreek/wheat/coriander– greengram systems also led to a marked improvement in SOC over initial status. Intervention of legumes also improved the available N, while cropping systems without non–legumes showed a decline in available N over initial status

    A Review on Recycling of Sunflower Residue for Sustaining Soil Health

    Get PDF
    Modern agriculture is now at the crossroads ecologically, economically, technologically, and socially due to soil degradation. Critical analysis of available information shows that problems of degradation of soil health are caused due to imbalanced, inadequate and promacronutrient fertilizer use, inadequate use or no use of organic manures and crop residues, and less use of good quality biofertilizers. Although sizeable amount of crop residues and manure is produced in farms, it is becoming increasingly complex to recycle nutrients, even within agricultural systems. Therefore, there is a need to use all available sources of nutrients to maintain the productivity and fertility at a required level. Among the available organic sources of plant nutrients, crop residue is one of the most important sources for supplying nutrients to the crop and for improving soil health. Sunflower is a nontraditional oil seed crop produced in huge amount of crop residue. This much amount of crop residues is neither used as feed for livestock nor suitable for fuel due to low energy value per unit mass. However, its residue contains major plant nutrients in the range from 0.45 to 0.60% N, 0.15 to 0.22% P, and 1.80 to 1.94% K along with secondary and micronutrients, so recycling of its residue in the soil may be one of the best alternative practices for replenishing the depleted soil fertility and improving the physical, chemical, and biological properties of the soil in the present era of production. However, some researchers have reported allelopathic effects of sunflower residue on different crops. So, selection of suitable crops and management practices may play an important role to manage the sunflower residue at field level

    Effect of artificial insemination in comparison to natural mating on the reproductive performance and profitability of smallholder pig production system in Indian Himalaya

    No full text
    In fragile ecosystems, smallholder pig production systems provide food and nutritional security to resource-poor communities. Pigs are the main livestock raised by indigenous communities in the Himalayan region of India, but their productivity is low for several reasons. The present study aimed to study the pig herd size and to evaluate the impact of artificial insemination (AI) on profitability and sustainability in the small-holder pig production system. A total of 612 AIs were carried out in 483 sows in the farmer's field along with 114 sows that underwent natural breeding. A comparison was made between the reproductive performance of sows following AI and natural breeding. The profitability and economics of AI and natural breeding were also compared. The mean pig population varied from 4.75 to 6.42 in the study region. The farrowing rate, total born piglets (TBPs), and live born piglets (LBPs) were significantly higher (P < 0.001) in artificially inseminated sows compared to naturally bred sows (9.37 vs. 6.28; 8.93 vs. 5.45). Farrowing rate (P = 0.005), TBP, and LBP were significantly (P < 0.001) higher in sows inseminated by female inseminator as compared to male inseminator (81.26 vs. 71.42%; 9.65 vs. 8.80; 9.21 vs. 8.38). The insemination by uneducated farmers resulted in significantly (P = 0.002) lower farrowing rate, TBP (P < 0.001), LBP (P < 0.001), and AI per farrowing (P = 0.042). The farmers who did AI for the third time and more than three times recorded significantly (P < 0.001) higher farrowing rates, TBP, and LBP. The farrowing rate was significantly (P < 0.001) less in sows that were located more than 30 km away from the semen center (66.66 vs. 82.90%). The net return per sow was significantly higher (P < 0.001) in artificially inseminated sows (US464.8vs.US464.8 vs. US248.11). AI resulted in an 87.33% increase in net returns per farrowing as compared to natural breeding. In conclusion, AI in smallholder pig production systems has the potential to sustainably improve the profitability as well as the food and nutritional security of resource-poor farmers

    Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India

    No full text
    The agrarian communities of South Asia are dominated by small and marginal farmers (10 resulted in achieving the maximum water productivity (6.72 kg/m3), energy productivity (1.50 kg/MJ), net return (9446 USD/ha), employment opportunities (792 man-days), sustainable livelihood index (70.2%), and nutrient cycling (138.12, 67.9, and 381.6 kg/ha of nitrogen, phosphorus, and potassium, respectively). These findings can be a scientific basis for the optimization and sustainable management of natural resources under different modules of IFS for the less-endowed small and marginal farmers

    Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach

    Get PDF
    Not AvailableRice-wheat cropping system (RWCS), a lifeline for the majority of the population in South Asia is under stress, due to the imbalanced and indiscriminate use of fertilizers. Therefore, we conducted an on-farm study at eight locations (Amritsar, Katni, Nainital, Samba, Pakur, Kanpur, Ambedkarnagar, and Dindori) covering five agro climatic zones of six Indian states (Jammu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, Madhya Pradesh, and Jharkhand) to (i) calculate the partial factor productivity (PFP) and agronomic use efficiency (AUE) to judge the response of NPK and Zn on grain yield of rice and wheat in RWCS and (ii) to work out the economic feasibility of different combinations of NPK in rice and wheat. Seven fertilizer treatments: Control (0-0-0), N alone (N-0-0), NP (N-P-0), NK (N-0-K), NPK (N-P-K), NPK+Zn (N-P-K-Zn), and FFMP (Farmers Fertilizer Management Practice) were assigned to all the locations. The levels of applied nutrients were used as per the standard recommendation of the location. The average of all the locations showed that the use of NP enhances the grain yield of rice and wheat by 105% and 97% over control, respectively. System productivity of RWCS was expressed in terms of rice grain equivalent yield (RGEY), Mg ha1. Among the locations, Samba recorded the lowest productivity of RWCS with fertilizer treatments. In contrast, the highest productivity of RWCS with fertilizer treatments was recorded at Amritsar, except with NPK and NPK+Zn fertilization, where Katni superseded the Amritsar. An approximately 3-fold productivity gain in RWCS was recorded with the conjoint use of NP over control across the locations. Overall, the results of our study showed that the balance application of NPK increased the productivity of RWCS 245% over control. Partial factor productivity of Nitrogen (PFPn) N alone in rice varied across locations and ranged from 19 kg grain kg1 N at Pakur to 41 kg grain kg1 N at Amritsar. PFPn of N alone in wheat also ranged from 15.5 kg grain kg1 of N at Ambedkarnagar to 28 kg grain kg1 N at Amritsar. However, across locations the mean value of PFPn of N alone was 29 kg grain kg1 N in rice and 21 kg grain kg1 N in wheat. PFPn increased when combined application of N and P sorted in both rice and wheat across the locations. Similarly, combined application of NPK increased partial factor productivity of applied phosphorus (PFPp) in both the crops at all the locations. The combined application of NPK increased the PFPk for applied K at all the location. The response of K application with N and P when averaged over the location was 114% in rice and 93% in wheat over the combined use of N and K. In our study, irrespective of fertilizer treatments, the agronomic use efficiency of applied N (AUEn) and agronomic use efficiency of applied P (AUEp) were greater in rice than in wheat across the location. With regards to the economics, the mean net monetary returns among the fertilizers treatments was minimum (INR 29.5 103 ha1) for the application of N alone and maximum (INR 8.65 103 ha1) for application of NPK+Zn. The mean marginal returns across the locations was in order of N alone > NK > FFM > NPK > NP > NPK+Zn.Not Availabl

    Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach

    Get PDF
    Rice-wheat cropping system (RWCS), a lifeline for the majority of the population in South Asia is under stress, due to the imbalanced and indiscriminate use of fertilizers. Therefore, we conducted an on-farm study at eight locations (Amritsar, Katni, Nainital, Samba, Pakur, Kanpur, Ambedkarnagar, and Dindori) covering five agro climatic zones of six Indian states (Jammu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, Madhya Pradesh, and Jharkhand) to (i) calculate the partial factor productivity (PFP) and agronomic use efficiency (AUE) to judge the response of NPK and Zn on grain yield of rice and wheat in RWCS and (ii) to work out the economic feasibility of different combinations of NPK in rice and wheat. Seven fertilizer treatments: Control (0-0-0), N alone (N-0-0), NP (N-P-0), NK (N-0-K), NPK (N-P-K), NPK+Zn (N-P-K-Zn), and FFMP (Farmers Fertilizer Management Practice) were assigned to all the locations. The levels of applied nutrients were used as per the standard recommendation of the location. The average of all the locations showed that the use of NP enhances the grain yield of rice and wheat by 105% and 97% over control, respectively. System productivity of RWCS was expressed in terms of rice grain equivalent yield (RGEY), Mg ha−1. Among the locations, Samba recorded the lowest productivity of RWCS with fertilizer treatments. In contrast, the highest productivity of RWCS with fertilizer treatments was recorded at Amritsar, except with NPK and NPK+Zn fertilization, where Katni superseded the Amritsar. An approximately 3-fold productivity gain in RWCS was recorded with the conjoint use of NP over control across the locations. Overall, the results of our study showed that the balance application of NPK increased the productivity of RWCS 245% over control. Partial factor productivity of Nitrogen (PFPn) N alone in rice varied across locations and ranged from 19 kg grain kg−1 N at Pakur to 41 kg grain kg−1 N at Amritsar. PFPn of N alone in wheat also ranged from 15.5 kg grain kg−1 of N at Ambedkarnagar to 28 kg grain kg−1 N at Amritsar. However, across locations the mean value of PFPn of N alone was 29 kg grain kg−1 N in rice and 21 kg grain kg−1 N in wheat. PFPn increased when combined application of N and P sorted in both rice and wheat across the locations. Similarly, combined application of NPK increased partial factor productivity of applied phosphorus (PFPp) in both the crops at all the locations. The combined application of NPK increased the PFPk for applied K at all the location. The response of K application with N and P when averaged over the location was 114% in rice and 93% in wheat over the combined use of N and K. In our study, irrespective of fertilizer treatments, the agronomic use efficiency of applied N (AUEn) and agronomic use efficiency of applied P (AUEp) were greater in rice than in wheat across the location. With regards to the economics, the mean net monetary returns among the fertilizers treatments was minimum (INR 29.5 × 103 ha−1) for the application of N alone and maximum (INR 8.65 × 103 ha−1) for application of NPK+Zn. The mean marginal returns across the locations was in order of N alone > NK > FFM > NPK > NP > NPK+Zn

    Not Available

    No full text
    Data employed in this study were taken from on-farm experiments conducted with rice and wheat between 2016 to 2017 in the Indian districts of Samba in the Jammu & Kashmir state, Amritsar in the Punjab state, Nainital in the Uttarakhand state, Kanpur and Ambedkarnagar in the Uttar Pradesh state, Pakur in the Jharkhand state, and Katni and Dindori in the Madhya Pradesh state (Figure 1) under the umbrella of the All India Coordinated Research Project (AICRP) on Integrated Farming Systems (IFS) On-Farm Research (OFR) by the Indian Council of Agricultural Research (ICAR)-Indian Institute of Farming Systems Research, Modipuram, UP, India. Among the tested locations, Amritsar, Kanpur, and Ambedkarnagar are located in the Indo Gangetic Plain (IGP) where the RWCS is a principal food production system. However, Samba, Nainital, Pakur, Katni, and Dindori are located outside IGP where the RWCS is an emerging production system.Rice-wheat cropping system (RWCS), a lifeline for the majority of the population in South Asia is under stress, due to the imbalanced and indiscriminate use of fertilizers. Therefore, we conducted an on-farm study at eight locations (Amritsar, Katni, Nainital, Samba, Pakur, Kanpur, Ambedkarnagar, and Dindori) covering five agro climatic zones of six Indian states (Jammu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, Madhya Pradesh, and Jharkhand) to (i) calculate the partial factor productivity (PFP) and agronomic use efficiency (AUE) to judge the response of NPK and Zn on grain yield of rice and wheat in RWCS and (ii) to work out the economic feasibility of different combinations of NPK in rice and wheat. Seven fertilizer treatments: Control (0-0-0), N alone (N-0-0), NP (N-P-0), NK (N-0-K), NPK (N-P-K), NPK+Zn (N-P-K-Zn), and FFMP (Farmers Fertilizer Management Practice) were assigned to all the locations. The levels of applied nutrients were used as per the standard recommendation of the location. The average of all the locations showed that the use of NP enhances the grain yield of rice and wheat by 105% and 97% over control, respectively. System productivity of RWCS was expressed in terms of rice grain equivalent yield (RGEY), Mg ha−1 . Among the locations, Samba recorded the lowest productivity of RWCS with fertilizer treatments. In contrast, the highest productivity of RWCS with fertilizer treatments was recorded at Amritsar, except with NPK and NPK+Zn fertilization, where Katni superseded the Amritsar. An approximately 3-fold productivity gain in RWCS was recorded with the conjoint use of NP over control across the locations. Overall, the results of our study showed that the balance application of NPK increased the productivity of RWCS 245% over control. Partial factor productivity of Nitrogen (PFPn) N alone in rice varied across locations and ranged from 19 kg grain kg−1 N at Pakur to 41 kg grain kg−1 N at Amritsar. PFPn of N alone in wheat also ranged from 15.5 kg grain kg−1 of N at Ambedkarnagar to 28 kg grain kg−1 N at Amritsar. However, across locations the mean value of PFPn of N alone was 29 kg grain kg−1 N in rice and 21 kg grain kg−1 N in wheat. PFPn increased when combined application of N and P sorted in both rice and wheat across the locations. Similarly, combined application of NPK increased partial factor productivity of applied phosphorus (PFPp) in both the crops at all the locations. The combined application of NPK increased the PFPk for applied K at all the location. The response of K application with N and P when averaged over the location was 114% in rice and 93% in wheat over the combined use of N and K. In our study, irrespective of fertilizer treatments, the agronomic use efficiency of applied N (AUEn) and agronomic use efficiency of applied P (AUEp) were greater in rice than in wheat across the location. With regards to the economics, the mean net monetary returns among the fertilizers treatments was minimum (INR 29.5 × 103 ha−1 ) for the application of N alone and maximum (INR 8.65 × 103 ha−1 ) for application of NPK+Zn. The mean marginal returns across the locations was in order of N alone > NK > FFM > NPK > NP > NPK+Zn.Not Availabl

    Not Available

    No full text
    Rice-wheat cropping system (RWCS), a lifeline for the majority of the population in South Asia is under stress, due to the imbalanced and indiscriminate use of fertilizers. Therefore, we conducted an on-farm study at eight locations (Amritsar, Katni, Nainital, Samba, Pakur, Kanpur, Ambedkarnagar, and Dindori) covering five agro climatic zones of six Indian states (Jammu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, Madhya Pradesh, and Jharkhand) to (i) calculate the partial factor productivity (PFP) and agronomic use efficiency (AUE) to judge the response of NPK and Zn on grain yield of rice and wheat in RWCS and (ii) to work out the economic feasibility of different combinations of NPK in rice and wheat. Seven fertilizer treatments: Control (0-0-0), N alone (N-0-0), NP (N-P-0), NK (N-0-K), NPK (N-P-K), NPK+Zn (N-P-K-Zn), and FFMP (Farmers Fertilizer Management Practice) were assigned to all the locations. The levels of applied nutrients were used as per the standard recommendation of the location. The average of all the locations showed that the use of NP enhances the grain yield of rice and wheat by 105% and 97% over control, respectively. System productivity of RWCS was expressed in terms of rice grain equivalent yield (RGEY), Mg ha1. Among the locations, Samba recorded the lowest productivity of RWCS with fertilizer treatments. In contrast, the highest productivity of RWCS with fertilizer treatments was recorded at Amritsar, except with NPK and NPK+Zn fertilization, where Katni superseded the Amritsar. An approximately 3-fold productivity gain in RWCS was recorded with the conjoint use of NP over control across the locations. Overall, the results of our study showed that the balance application of NPK increased the productivity of RWCS 245% over control. Partial factor productivity of Nitrogen (PFPn) N alone in rice varied across locations and ranged from 19 kg grain kg1 N at Pakur to 41 kg grain kg1 N at Amritsar. PFPn of N alone in wheat also ranged from 15.5 kg grain kg1 of N at Ambedkarnagar to 28 kg grain kg1 N at Amritsar. However, across locations the mean value of PFPn of N alone was 29 kg grain kg1 N in rice and 21 kg grain kg1 N in wheat. PFPn increased when combined application of N and P sorted in both rice and wheat across the locations. Similarly, combined application of NPK increased partial factor productivity of applied phosphorus (PFPp) in both the crops at all the locations. The combined application of NPK increased the PFPk for applied K at all the location. The response of K application with N and P when averaged over the location was 114% in rice and 93% in wheat over the combined use of N and K. In our study, irrespective of fertilizer treatments, the agronomic use efficiency of applied N (AUEn) and agronomic use efficiency of applied P (AUEp) were greater in rice than in wheat across the location. With regards to the economics, the mean net monetary returns among the fertilizers treatments was minimum (INR 29.5 103 ha1) for the application of N alone and maximum (INR 8.65 103 ha1) for application of NPK+Zn. The mean marginal returns across the locations was in order of N alone > NK > FFM > NPK > NP > NPK+Zn.Not Availabl
    corecore