37 research outputs found

    Intraarticular versus intravenous tranexemic acid in reducing blood loss after primary total knee arthroplasty

    Get PDF
    Background: One of the substantial complications of total knee arthroplasty is major blood loss. Postoperative blood loss can range up to 2000 ml and 10-38% of patients may require blood transfusion. Among the sundry methods of preventing this prob, tranexamic acid, an anti-fibrinolytic, is one of the most effective options. It can be administered directly into the blood or injected locally. The purpose of this study was to compare the hemostatic effects of intraarticular versus intravenous administration of tranexamic acid in primary total knee arthroplasty. Methods: A prospective comparative observational study was done from done September 2020 to February 2022 at Civil Service Hospital, Kathmandu. 64 patients randomized into two groups: an intraarticular tranexamic acid group (31 patients who received 3.0 grams of intraarticular tranexamic acid) and intravenous tranexamic acid group (31 patients who received 15 mg/kg intravenous tranexamic acid in two instances). The primary measure was the amount of hemoglobin loss. Secondary outcomes included comparison of hemoglobin level pre- and post- operatively at first and fifth day, drain volume at 48 hours and amount of blood transfusion. There were no significant differences in demographics or preoperative laboratory values between the groups. Results: The baseline data, preoperative hemoglobin, and tourniquet time were similar in both groups. Hemoglobin at first and fifth operative day and drain volume at 48 hours were measured in both categories. There was no significant difference in perioperative blood loss, drain volume, rates of allogeneic blood transfusion between the two groups.  No any thromboembolic complications occurred. Conclusions: Intra-articular administration of tranexamic acid was found to be as effective and safe as intra-venous administration in reducing blood loss in primary total knee arthroplasty

    Weed dynamics, wheat (Triticum aestivum) yield and irrigation water-use efficiency under conservation agriculture

    Get PDF
    A field experiment was conducted to evaluate the impacts of a 12-year old conservation agriculture (CA)- based pigeon pea-wheat system on weeds, wheat crop, and resource use during winter (rabi) 2021–22. Results indicated that surface retention of residue irrespective of ZT permanent bed and N dose led to significant reduction in weed interference at 60 DAS. CA-based systems reduced weed density and dry weight considerably than CT. CA- based systems led to significantly higher wheat grain yield (by 11.6–14.9%) and net B:C (by 24.0 –28.0%) than CT, and PFBR100N and PBBR100N were slightly superior to others. PBBR100N and PBBR75N had lower irrigation water use and significantly higher irrigation water productivity than CT. Contrast analysis showed that wheat yield and water productivity were comparable between 75% N and 100% N in CA, indicating a saving of 25% N under CA

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Clinical outcomes of chemotherapy in cancer patients with different ethnicities

    No full text
    Abstract Background Choosing the most effective chemotherapeutic agent with safest side effect profile is a common challenge in cancer treatment. Although there are standardized chemotherapy protocols in place, protocol changes made after extensive clinical trials demonstrate significant improvement in the efficacy and tolerability of certain drugs. The pharmacokinetics, pharmacodynamics, and tolerance of anti‐cancer medications are all highly individualized. A driving force behind these differences lies within a person's genetic makeup. Recent findings Pharmacogenomics, the study of how an individual's genes impact the processing and action of a drug, can optimize drug responsiveness and reduce toxicities by creating a customized medication regimen. However, these differences are rarely considered in the initial determination of standardized chemotherapeutic protocols and treatment algorithms. Because pharmacoethnicity is influenced by both genetic and nongenetic variables, clinical data highlighting disparities in the frequency of polymorphisms between different ethnicities is steadily growing.  Recent data suggests that ethnic variations in the expression of allelic variants may result in different pharmacokinetic properties of the anti‐cancer medication. In this article, the clinical outcomes of various chemotherapy classes in patients of different ethnicities were reviewed. Conclusion Genetic and nongenetic variables contribute to the interindividual variability in response to chemotherapeutic drugs. Considering pharmacoethnicity in the initial determination of standard chemotherapeutic protocols and treatment algorithms can lead to better clinical outcomes of patients of different ethnicities

    High-altitude characterization of the Hunga pressure wave with cosmic rays by the HAWC observatory

    No full text
    High-energy cosmic rays that hit the Earth can be used to study large-scale atmospheric perturbations. After a first interaction in the upper parts of the atmosphere, cosmic rays produce a shower of particles that sample it down to the detector level. The HAWC (High-Altitude Water Cherenkov) gamma-ray observatory in Central Mexico at 4,100 m elevation detects air shower particles continuously with 300 water Cherenkov detectors with an active area of 12,500 m2. On January 15th, 2022, HAWC detected the passage of the pressure wave created by the explosion of the Hunga volcano in the Tonga islands, 9,000 km away, as an anomaly in the measured rate of shower particles. The HAWC measurements are used to determine the propagation speed of four pressure wave passages, and correlate the variations of the shower particle rates with the barometric pressure changes. The profile of the shower particle rate and atmospheric pressure variations for the first transit of the pressure wave at HAWC is compared to the pressure measurements at the Tonga island, near the volcanic explosion. By using the cosmic-ray propagation in the atmosphere as a probe for the pressure, it is possible to achieve very high time-resolution measurements. Moreover, the high-altitude data from HAWC allows to observe the shape of the pressure anomaly with less perturbations compared to sea level detectors. Given the particular location and the detection method of HAWC, our high-altitude data provides valuable information that contributes to fully characterize this once-in-a-century phenomenon

    A Comprehensive Understanding of Electro-Fermentation

    No full text
    Electro-fermentation (EF) is an upcoming technology that can control the metabolism of exoelectrogenic bacteria (i.e., bacteria that transfer electrons using an extracellular mechanism). The fermenter consists of electrodes that act as sink and source for the production and movement of electrons and protons, thus generating electricity and producing valuable products. The conventional process of fermentation has several drawbacks that restrict their application and economic viability. Additionally, metabolic reactions taking place in traditional fermenters are often redox imbalanced. Almost all metabolic pathways and microbial strains have been studied, and EF can electrochemically control this. The process of EF can be used to optimize metabolic processes taking place in the fermenter by controlling the redox and pH imbalances and by stimulating carbon chain elongation or breakdown to improve the overall biomass yield and support the production of a specific product. This review briefly discusses microbe-electrode interactions, electro-fermenter designs, mixed-culture EF, and pure culture EF in industrial applications, electro methanogenesis, and the various products that could be hence generated using this process

    A Comprehensive Understanding of Electro-Fermentation

    No full text
    Electro-fermentation (EF) is an upcoming technology that can control the metabolism of exoelectrogenic bacteria (i.e., bacteria that transfer electrons using an extracellular mechanism). The fermenter consists of electrodes that act as sink and source for the production and movement of electrons and protons, thus generating electricity and producing valuable products. The conventional process of fermentation has several drawbacks that restrict their application and economic viability. Additionally, metabolic reactions taking place in traditional fermenters are often redox imbalanced. Almost all metabolic pathways and microbial strains have been studied, and EF can electrochemically control this. The process of EF can be used to optimize metabolic processes taking place in the fermenter by controlling the redox and pH imbalances and by stimulating carbon chain elongation or breakdown to improve the overall biomass yield and support the production of a specific product. This review briefly discusses microbe-electrode interactions, electro-fermenter designs, mixed-culture EF, and pure culture EF in industrial applications, electro methanogenesis, and the various products that could be hence generated using this process

    Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions

    No full text
    The article presents the findings of three-year field experiments conducted during 2017–2020 on the productivity, economics, and environmental footprints of the oilseed Brassica (OSB) with species diversification and crop geometry alterations in semi-arid regions of India. The objectives of the field experimentation was to assess the system of mustard intensification (SMI) in enhancing productivity and profitability with ensuring fewer environmental footprints. The results revealed that Brassica carinata gave a maximum seed productivity (3173.8 kg ha−1) and net returns (US$ 1141.72 ha−1) under a crop geometry of 60 cm × 60 cm. Further, an increase of 38% and 54% in seed yield and net returns from B. carinata was observed over the existing traditional Brassica juncea with conventional crop geometry. The maximum energy output was also recorded from B. carinata (246,445 MJ ha−1). The broader crop geometry (60 cm × 60 cm) also resulted in maximum energy output. The environmental footprint was lesser due to increased carbon gain (CG), carbon output (CO), and carbon production efficiency (CPE) and lower greenhouse gas intensity (GHGi) in B. carinata. However, the maximum water-use efficiency (WUE) was recorded in B. juncea (19.15 kg per ha-mm), with a minimum water footprint (WFP), whereas, greater crop geometry (60 cm × 60 cm) resulted in lower WFPs and better irrigation water use. Enhanced seed yield, economics, and fewer environmental footprints were observed at broader crop geometry in B. carinata over remaining OSBs
    corecore