33 research outputs found

    Research Strategies in the Study of the Pro-Oxidant Nature of Polyphenol Nutraceuticals

    Get PDF
    Polyphenols of phytochemicals are thought to exhibit chemopreventive effects against cancer. These plant-derived antioxidant polyphenols have a dual nature, also acting as pro-oxidants, generating reactive oxygen species (ROS), and causing oxidative stress. When studying the overall cytotoxicity of polyphenols, research strategies need to distinguish the cytotoxic component derived from the polyphenol per se from that derived from the generated ROS. Such strategies include (a) identifying hallmarks of oxidative damage, such as depletion of intracellular glutathione and lipid peroxidation, (b) classical manipulations, such as polyphenol exposures in the absence and presence of antioxidant enzymes (i.e., catalase and superoxide dismutase) and of antioxidants (e.g., glutathione and N-acetylcysteine) and cotreatments with glutathione depleters, and (c) more recent manipulations, such as divalent cobalt and pyruvate to scavenge ROS. Attention also must be directed to the influence of iron and copper ions and to the level of polyphenols, which mediate oxidative stress

    Toward large-scale Hybrid Monte Carlo simulations of the Hubbard model on graphics processing units

    Full text link
    The performance of the Hybrid Monte Carlo algorithm is determined by the speed of sparse matrix-vector multiplication within the context of preconditioned conjugate gradient iteration. We study these operations as implemented for the fermion matrix of the Hubbard model in d+1 space-time dimensions, and report a performance comparison between a 2.66 GHz Intel Xeon E5430 CPU and an NVIDIA Tesla C1060 GPU using double-precision arithmetic. We find speedup factors ranging between 30-350 for d = 1, and in excess of 40 for d = 3. We argue that such speedups are of considerable impact for large-scale simulational studies of quantum many-body systems.Comment: 8 pages, 5 figure

    Universal hypermultiplet metrics

    Full text link
    Some instanton corrections to the universal hypermultiplet moduli space metric of the type-IIA string theory compactified on a Calabi-Yau threefold arise due to multiple wrapping of BPS membranes and fivebranes around certain cycles of Calabi-Yau. The classical universal hypermultipet metric is locally equivalent to the Bergmann metric of the symmetric quaternionic space SU(2,1)/U(2), whereas its generic quaternionic deformations are governed by the integrable SU(infinity) Toda equation. We calculate the exact (non-perturbative) UH metrics in the special cases of (i) the D-instantons (the wrapped D2-branes) in the absence of fivebranes, and (ii) the fivebrane instantons with vanishing charges, in the absence of D-instantons. The solutions of the first type preserve the U(1)xU(1) classical symmetry, while they can be interpreted as the gravitational dressing of the hyper-K"ahler D-instanton solutions. The second type solution preserves the non-abelian SU(2) classical symmetry, while it can be interpreted as a gradient flow in the universal hypermultiplet moduli space.Comment: 30 pages, LaTe

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore