2 research outputs found

    Polymorphisms of Codons 110, 146, 211 and 222 at the Goat PRNP Locus and Their Association with Scrapie in Greece

    No full text
    Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies

    Genotype diversity of brucellosis agents isolated from humans and animals in Greece based on whole-genome sequencing

    No full text
    Abstract Background Brucellosis is a zoonotic disease whose causative agent, Brucella spp., is endemic in many countries of the Mediterranean basin, including Greece. Although the occurrence of brucellosis must be reported to the authorities, it is believed that the disease is under-reported in Greece, and knowledge about the genomic diversity of brucellae is lacking. Methods Thus, 44 Brucella isolates, primarily B. melitensis, collected between 1999 and 2009 from humans and small ruminants in Greece were subjected to whole genome sequencing using short-read technology. The raw reads and assembled genomes were used for in silico genotyping based on single nucleotide substitutions and alleles. Further, specific genomic regions encoding putative virulence genes were screened for characteristic nucleotide changes, which arose in different genotype lineages. Results In silico genotyping revealed that the isolates belonged to three of the known sublineages of the East Mediterranean genotype. In addition, a novel subgenotype was identified that was basal to the other East Mediterranean sublineages, comprising two Greek strains. The majority of the isolates can be assumed to be of endemic origin, as they were clustered with strains from the Western Balkans or Turkey, whereas one strain of human origin could be associated with travel to another endemic region, e.g. Portugal. Further, nucleotide substitutions in the housekeeping gene rpoB and virulence-associated genes were detected, which were characteristic of the different subgenotypes. One of the isolates originating from an aborted bovine foetus was identified as B. abortus vaccine strain RB51. Conclusion The results demonstrate the existence of several distinct persistent Brucella sp. foci in Greece. To detect these and for tracing infection chains, extensive sampling initiatives are required
    corecore