27 research outputs found

    Quantum Sine(h)-Gordon Model and Classical Integrable Equations

    Full text link
    We study a family of classical solutions of modified sinh-Gordon equation, $\partial_z\partial_{{\bar z}} \eta-\re^{2\eta}+p(z)\,p({\bar z})\ \re^{-2\eta}=0with with p(z)=z^{2\alpha}-s^{2\alpha}.Weshowthatcertainconnectioncoefficientsforsolutionsoftheassociatedlinearproblemcoincidewiththe. We show that certain connection coefficients for solutions of the associated linear problem coincide with the QfunctionofthequantumsineGordon-function of the quantum sine-Gordon (\alpha>0)orsinhGordon or sinh-Gordon (\alpha<-1)$ models.Comment: 35 pages, 3 figure

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.fals

    The perspectives of biomedical application of the nanoceria

    No full text

    A gasometric method to determine erythrocyte catalase activity

    No full text
    We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1). The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work
    corecore