592 research outputs found

    The effect of magnetic dipolar interactions on the interchain spin wave dispersion in CsNiF_3

    Full text link
    Inelastic neutron scattering measurements were performed on the ferromagnetic chain system CsNiF_3 in the collinear antiferromagnetic ordered state below T_N = 2.67K. The measured spin wave dispersion was found to be in good agreement with linear spin wave theory including dipolar interactions. The additional dipole tensor in the Hamiltonian was essential to explain some striking phenomena in the measured spin wave spectrum: a peculiar feature of the dispersion relation is a jump at the zone center, caused by strong dipolar interactions in this system. The interchain exchange coupling constant and the planar anisotropy energy were determined within the present model to be J'/k_B = -0.0247(12)K and A/k_B = 3.3(1)K. This gives a ratio J/J' \approx 500, using the previously determined intrachain coupling constant J/k_B = 11.8$. The small exchange energy J' is of the same order as the dipolar energy, which implies a strong competition between the both interactions.Comment: 18 pages, TeX type, 7 Postscript figures included. To be published in Phys. Rev.

    Vertical concentrations gradients and transport of airborne microplastics in wind tunnel experiments

    Get PDF
    Microplastics are an ubiquitous anthropogenic material in the environment, including the atmosphere. Little work has focused on the atmospheric transport mechanisms of microplastic nor its dispersion, despite it being a potential pollutant. We study the vertical transport of airborne microplastics in a wind tunnel, a controllable environment with neutral stability, to identify the necessary conditions for the long-range atmospheric transport of microplastics. An ultrasonic disperser generated airborne water droplets from a suspension of polystyrene microsphere microplastics (MPs) with a diameter of 0.51 µm. The water droplets were injected into the airflow, evaporating and releasing single airborne MPs. The disperser allowed for time-invariant and user-controlled concentrations of MPs in the wind tunnel. MPs were injected at 27, 57, and 255 mm above the ground. A single GRIMM R11 optical particle counter (OPC) and three Alphasense OPCs measured time-averaged MP concentration profiles (27, 57, and 157 mm above the ground). These were combined with turbulent airflow characteristics measured by a hotwire probe to estimate vertical particle fluxes using the flux-gradient similarity theory. The GRIMM R11 OPC measured vertical concentration profiles by moving its sampling tube vertically. The three Alphasense OPCs measured particle concentrations simultaneously at three distinct heights. Results show that maximum concentrations are not measured at the injection height but are rather shifted to the surface by gravitational settling. The MPs experience higher gravitational settling while they are part of the larger water droplets. For the lowest injection at 27 mm, the settling leads to smaller MP concentrations in the wind tunnel, as MPs are lost to deposition. Increasing the wind speed decreases the loss of MPs by settling, but settling is present until our maximum friction velocity of 0.14 m s−1. For the highest injection at 255 mm and laminar flow, the settling resulted in a net MP emission, challenging the expectation of a net MP deposition for high injection. Turbulent flows reverse the MP concentration profile giving a net MP deposition with deposition velocities of 3.7 ± 1.9 cm s−1. Recognizing that microplastics share deposition velocities with mineral particles bridges the gap in understanding their environmental behavior. The result supports the use of existing models to evaluate the transport of microplastics in the accumulation mode. The similar deposition velocities suggest that microplastics transported in the atmosphere can be found in the same places as mineral particles.</p

    Design of Multistep Aging Treatments of 2099 (C458) Al-Li Alloy

    Get PDF
    Multistep artificial aging treatments coupled with various natural aging times for aluminum lithium 2099 alloy (previously called C458) are discussed to obtain mechanical tensile properties in the T6 condition that match those in the T861 condition, having a yield strength in the range of 414-490 MPa (60-71 ksi), an ultimate strength in the range of 496-538 MPa (72-78 ksi), and 10-13% elongation. Yield and ultimate tensile strengths from 90-100% of the strength of the as-received material (in the T861 condition) were obtained. The highest tensile strengths were consistently obtained with two-step, low-to-high temperature artificial aging treatments consisting of a first step at 120 degrees C (248 degrees F) for 12-24 h followed by a second step between 165 and 180 degrees C (329-356 degrees F) for 48-100 h. These T6-type heat treatments produced average yield and ultimate strengths in the longitudinal direction in the range of 428-472 MPa (62.1-68.5 ksi) and 487-523 MPa (70.6-75.9 ksi), respectively, as well as lower yield strength anisotropy when compared with the as-received material in the T861 condition

    Radioresistant subpopulation in a culture of glioma-initiating cells

    Get PDF

    High-resolution modelling of interactions between soil moisture and convective development in a mountain enclosed Tibetan Basin

    Get PDF
    Abstract. The Tibetan Plateau plays a significant role in atmospheric circulation and the Asian monsoon system. Turbulent surface fluxes and the evolution of boundary-layer clouds to deep and moist convection provide a feedback system that modifies the plateau's surface energy balance on scales that are currently unresolved in mesoscale models. This work analyses the land surface's role and specifically the influence of soil moisture on the triggering of convection at a cross section of the Nam Co Lake basin, 150 km north of Lhasa using a cloud-resolving atmospheric model with a fully coupled surface. The modelled turbulent fluxes and development of convection compare reasonably well with the observed weather. The simulations span Bowen ratios of 0.5 to 2.5. It is found that convective development is the strongest at intermediate soil moisture. Dry cases with soils close to the permanent wilting point are moisture limited in convective development, while convection in wet soil moisture cases is limited by cloud cover reducing incoming solar radiation and sensible heat fluxes, which has a strong impact on the surface energy balance. This study also shows that local development of convection is an important mechanism for the upward transport of water vapour, which originates from the lake basin that can then be transported to dryer regions of the plateau. Both processes demonstrate the importance of soil moisture and surface–atmosphere interactions on the energy and hydrological cycles of the Tibetan Plateau. This research was funded by the German Research Foundation (DFG) Priority Programme 1372 “Tibetan Plateau: Formation, Climate, Ecosystems” as part of the Atmosphere–Ecology–Glaciology–Cluster (TiP-AEG): FO 226/18- 1,2. The work described in this publication has been supported by the European Commission (Call FP7-ENV-2007-1 grant no. 212921) as part of the CEOP-AEGIS project coordinated by the University of Strasbourg. The map of Nam Co was produced by Sophie Biskop (University of Jena) and Jan Kropacek (University of Tübingen) within DFG-TiP and Phil Stickler of the Cambridge Geography Department Cartography Unit. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth in the funding programme Open-Access Publishing.This is the final version of the article. It first appeared from European Geosciences Union via http://dx.doi.org/10.5194/hess-19-4023-201

    Line Forces in Keplerian Circumstellar Disks and Precession of Nearly Circular Orbits

    Get PDF
    We examine the effects of optically thick line forces on orbiting circumstellar disks, such as occur around Be stars. For radially streaming radiation, line forces are only effective if there is a strong radial velocity gradient, as occurs, for example, in a line-driven stellar wind. However, within an orbiting disk, the radial shear of the azimuthal velocity leads to strong line-of-sight velocity velocity gradients along nonradial directions. As such, in the proximity of a stellar surface extending over a substantial cone angle, the nonradial stellar radiation can impart a significant line force, even in the case of purely circular orbits. Given the highly supersonic nature of orbital velocity variations, we use the Sobolev approximation, thereby extending to the disk case the standard CAK formalism developed for line-driven winds. We delineate the parameter regimes for which radiative forces might alter disk properties; but even when radiative forces are small, we analytically quantify higher-order effects in the linear limit, including the precession of weakly elliptical orbits. We find that optically thick line forces can have observable implications for the dynamics of disks around Be stars, including the generation of either prograde or retrograde precession in slightly eccentric orbits. However, our analysis suggests a net retrograde effect, in apparent contradiction with observed long-term variations of violet/red line profile asymmetries from Be stars, which are generally thought to result from prograde propagation of a so-called ``one arm mode''. We also conclude that radiative forces may alter the dynamical properties at the surface of the disk where disk winds originate, and may even make low-density disks vulnerable to being blown away.Comment: 31 pages, Latex, aaspp4 macro, 4 figure

    Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Get PDF
    This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference

    Looking for pulsations in HgMn stars through CoRoT lightcurves

    Full text link
    HgMn Chemically Peculiar stars are among the quietest stars of the main-sequence. However, according to theoretical predictions, these stars could have pulsations related to the very strong overabundances of iron peak elements, which are produced by atomic diffusion in upper layers. Such pulsations have never been detected from ground based observations. Our aim is to search for signatures of pulsations in HgMn stars using the high quality lightcurves provided by the CoRoT satellite. We identified three faint stars (V>12), from VLT-GIRAFFE multiobject spectrograph survey in a field which was planned for observation by CoRoT. They present the typical characteristics of HgMn stars. They were observed by the CoRoT satellite during the long run (131 days) which started from the 24th of October 2007, with the exoplanets CCD's (Additional Programme). In the present work, we present the analysis of the ground based spectra of these three stars and the analysis of the corresponding CoRoT lightcurves. Two of these three HgMn candidates show low amplitude (less than 1.6 mmag) periodic variations (4.3 and 2.53 days respectively, with harmonics) which are compatible with periods predicted by theoretical models.Comment: Accepted paper in A&A (7 May 2009

    High-Resolution Chandra X-Ray Imaging And Spectroscopy Of The Sigma Orionis Cluster

    Get PDF
    We present results of a 90 ks Chandra X-ray observation of the young sigma Orionis cluster ( age similar to 3 Myr) obtained with the HETGS. We use the high-resolution grating spectrum and moderate-resolution CCD spectrum of the massive central star sigma Ori AB (O9.5 V + B0.5 V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5 V binary HD 37525. Most of the other detections have properties consistent with lower mass K- or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS 1, located approximate to 3 \u27\u27 north of sigma Ori AB. Its X-ray properties and elongated mid-IR morphology suggest that it is an embedded low-mass T Tauri star whose disk/envelope is being photoevaporated by sigma Ori AB. We focus on the radiative wind shock interpretation of the soft luminous X-ray emission from sigma Ori AB, but also consider possible alternatives including magnetically confined wind shocks and colliding wind shocks. Its emission lines show no significant asymmetries or centroid shifts and are moderately broadened to HWHM approximate to 264 km s(-1), or one-fourth the terminal wind speed. Forbidden lines in He-like ions are formally undetected, implying strong UV suppression. The Mg XI triplet forms in the wind acceleration zone within one stellar radius above the surface. These X-ray properties are consistent in several respects with the predictions of radiative wind shock theory for an optically thin wind, but explaining the narrow line widths presents a challenge to the theory

    Pulsation in the atmosphere of the roAp star HD 24712. I. Spectroscopic observations and radial velocity measurements

    Get PDF
    We have investigated the structure of the pulsating atmosphere of one of the best studied rapidly oscillating Ap stars, HD 24712. For this purpose we analyzed spectra collected during 2001-2004. An extensive data set was obtained in 2004 simultaneously with the photometry of the Canadian MOST mini-satellite. This allows us to connect directly atmospheric dynamics observed as radial velocity variations with light variations seen in photometry. We directly derived for the first time and for different chemical elements, respectively ions, phase shifts between photometric and radial velocity pulsation maxima indicating, as we suggest, different line formation depths in the atmosphere. This allowed us to estimate for the first time the propagation velocity of a pulsation wave in the outer stellar atmosphere of a roAp star to be slightly lower than the sound speed. We confirm large pulsation amplitudes (150-400 m/s) for REE lines and the Halpha core, while spectral lines of the other elements (Mg, Si, Ca, and Fe-peak elements) have nearly constant velocities. We did not find different pulsation amplitudes and phases for the lines of rare-earth elements before and after the Balmer jump, which supports the hypothesis of REE concentration in the upper atmosphere above the hydrogen line-forming layers. We also discuss radial velocity amplitudes and phases measured for individual spectral lines as tools for a 3D tomography of the atmosphere of HD 24712.Comment: accepted by A&
    corecore