88 research outputs found
Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues
Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered
Evidence for surface uplift of the Atlas Mountains and the surrounding peripheral plateaux: Combining apatite fission-track results and geomorphic indicators in the Western Moroccan Meseta (coastal Variscan Paleozoic basement)
This work represents an initial attempt to link the evolution of the topography in relation to the general tectonic framework of western Morocco. For this purpose, in a section of the Western Moroccan Meseta different tools are combined in order to attain the general objective. Apatite fission-track (AFT) data of granitic rocks of the Rabat–Khenifra area give ages around 200 Ma with track length distributions which are compatible with the thermal models already established for the area. An inverse correlation between AFT ages and elevation is observed which is compatible with previous models indicating northward tilting of the whole Western Moroccan Meseta which is younger than 20–25 Ma. In order to test this possibility a detailed analysis of the topography at different scales in the Western Moroccan Meseta has been performed. Results indicate that two open folds with different amplitudes are recognized and that the one with wider wavelength could correspond to a lithospheric fold as previously stated by other authors on the basis of independent geological arguments. The northward tilting proposed based on the AFT data agrees with the results obtained in the analysis of the topography which reinforces the presence of a very open fold with a wavelength of 200–300 km in the north-western limb of the Western Moroccan Meseta
Conventionally assessed voluntary activation does not represent relative voluntary torque production
The ability to voluntarily activate a muscle is commonly assessed by some variant of the twitch interpolation technique (ITT), which assumes that the stimulated force increment decreases linearly as voluntary force increases. In the present study, subjects (n = 7) with exceptional ability for maximal voluntary activation (VA) of the knee extensors were used to study the relationship between superimposed and voluntary torque. This includes very high contraction intensities (90–100%VA), which are difficult to consistently obtain in regular healthy subjects (VA of ∼90%). Subjects were tested at 30, 60, and 90° knee angles on two experimental days. At each angle, isometric knee extensions were performed with supramaximal superimposed nerve stimulation (triplet: three pulses at 300 Hz). Surface EMG signals were obtained from rectus femoris, vastus lateralis, and medialis muscles. Maximal VA was similar and very high across knee angles: 97 ± 2.3% (mean ± SD). At high contraction intensities, the increase in voluntary torque was far greater than would be expected based on the decrement of superimposed torque. When voluntary torque increased from 79.6 ± 6.1 to 100%MVC, superimposed torque decreased from 8.5 ± 2.6 to 2.8 ± 2.3% of resting triplet. Therefore, an increase in VA of 5.7% (from 91.5 ± 2.6 to 97 ± 2.3%) coincided with a much larger increase in voluntary torque (20.4 ± 6.1%MVC) and EMG (33.9 ± 6.6%max). Moreover, a conventionally assessed VA of 91.5 ± 2.6% represented a voluntary torque of only 79.6 ± 6.1%MVC. In conclusion, when maximal VA is calculated to be ∼90% (as in regular healthy subjects), this probably represents a considerable overestimation of the subjects’ ability to maximally drive their quadriceps muscles
The dynamic conformational landscape of the protein methyltransferase SETD8
Elucidating the conformational heterogeneity of proteins is essential for understanding
protein function and developing exogenous ligands. With the rapid development of experimental
and computational methods, it is of great interest to integrate these approaches to illuminate the
conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT),
which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent
inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse
X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular
dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state
models, built via an automated machine learning approach and corroborated experimentally, reveal
how slow conformational motions and conformational states are relevant to catalysis. These
findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via
its detailed conformational landscape
Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?
International audienceThe aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability
Erosion of the Mediterranean margins during the Messinian drawdown Modeling towards a better mechanistic understanding
14th Congress of Regional Committee on Mediterranean Neogene Stratigraphy (RCMNS), 8-12 September 2013, Istanbul, TurkeyPeer Reviewe
- …