2,531 research outputs found
Baryonic Bound State of Vortices in Multicomponent Superconductors
We construct a bound state of three 1/3-quantized Josephson coupled vortices
in three-component superconductors with intrinsic Josephson couplings, which
may be relevant with regard to iron-based superconductors. We find a Y-shaped
junction of three domain walls connecting the three vortices, resembling the
baryonic bound state of three quarks in QCD. The appearance of the Y-junction
(but not a Delta-junction) implies that in both cases of superconductors and
QCD, the bound state is described by a genuine three-body interaction (but not
by the sum of two-body interactions). We also discuss a
confinement/deconfinement phase transition.Comment: 11 pages, 3 figures, one section on confinement/deconfinement
transition added, published versio
Vortices with fractional flux in two-gap superconductors and in extended Faddeev model
We discuss vortices allowed in two-gap superconductors, bilayer systems and
in equivalent extended Faddeev model. We show that in these systems there exist
vortices which carry an arbitrary fraction of magnetic flux quantum. Besides
that we discuss topological defects which do not carry magnetic flux and
describe features of ordinary one-magnetic-flux-quantum vortices in the two-gap
system. The results should be relevant for the newly discovered two-band
superconductor .Comment: v2 references added, v3 journal version, presentation improved. Links
to related papers are available at the home page of the author
http://www.teorfys.uu.se/PEOPLE/ego
Dual neutral variables and knot solitons in triplet superconductors
In this paper we derive a dual presentation of free energy functional for
spin-triplet superconductors in terms of gauge-invariant variables. The
resulting equivalent model in ferromagnetic phase has a form of a version of
the Faddeev model. This allows one in particular to conclude that spin-triplet
superconductors allow formation of stable finite-length closed vortices (the
knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the
effect of the coupling of the fields {\vec s} and {\vec C} on knot
stability). Latest updates of the paper and miscellaneous links related to
knotted solitons are also available at the homepage of the author
http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by
Hietarinta and Salo are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
BCS-Bose Crossover in Color Superconductivity
It is shown that the onset of the color superconducting phase occurs in the
BCS-BE crossover region.Comment: 5 pages, LaTeX, references adde
Revised Phase Diagram of the Gross-Neveu Model
We confirm earlier hints that the conventional phase diagram of the discrete
chiral Gross-Neveu model in the large N limit is deficient at non-zero chemical
potential. We present the corrected phase diagram constructed in mean field
theory. It has three different phases, including a kink-antikink crystal phase.
All transitions are second order. The driving mechanism for the new structure
of baryonic matter in the Gross-Neveu model is an Overhauser type instability
with gap formation at the Fermi surface.Comment: Revtex, 12 pages, 15 figures; v2: Axis labelling in Fig. 9 correcte
Superconductivity in the quasi-two-dimensional Hubbard model
On the basis of spin and pairing fluctuation-exchange approximation, we study
the superconductivity in quasi-two-dimensional Hubbard model. The integral
equations for the Green's function are self-consistently solved by numerical
calculation. Solutions for the order parameter, London penetration depth,
density of states, and transition temperature are obtained. Some of the results
are compared with the experiments for the cuprate high-temperature
superconductors. Numerical techniques are presented in details. With these
techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure
Single vortex structure in two models of iron pnictide superconductivity
The structure of a single vortex in a FeAs superconductor is studied in the
framework of two formulations of superconductivity for the recently proposed
sign-reversed wave () scenario: {\it (i)} a continuum model taking
into account the existence of an electron and a hole band with a repulsive
local interaction between the two; {\it (ii)} a lattice tight-binding model
with two orbitals per unit cell and a next-nearest-neighbour attractive
interaction. In the first model, the local density of states (LDOS) at the
vortex centre, as a function of energy, exhibits a peak at the Fermi level,
while in the second model such LDOS peak is deviated from the Fermi level and
its energy depends on band filling. An impurity located outside the vortex core
has little effect on the LDOS peak, but an impurity close to the vortex core
can almost suppress it and modify its position.Comment: 17 pages, 15 figures. Accepted for publication in New Journal of
Physic
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Low temperature electronic properties of Sr_2RuO_4 III: Magnetic fields
Based on the microscopic model introduced previously the observed specific
heat and ac-susceptibility data in the superconducting phase in Sr_2RuO_4 with
applied magnetic fields are described consistently within a phenomenological
approach. Discussed in detail are the temperature dependence of the upper
critical fields H_{c2} and H_2, the dependence of the upper critical fields on
the field direction, the linear specific heat below the superconducting phase
transition as a function of field or temperature, the anisotropy of the two
spatial components of the order parameter, and the fluctuation field H_p.Comment: 8 pages REVTEX, 4 figure
Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity
The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp
scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx}
orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized
description of the in-plane electron correlations the superconducting order
parameter is found to be a orbital-singlet spin-triplet with two spatial
components. The spatial anisotropy is 7%. The different components of the order
parameter give rise to two-dimensional gapless fluctuations. The phase
transition is of third order. The temperature dependence of the pair density,
specific heat, NQR, Knight shift, and susceptibility are in agreement with
experimental results.Comment: 20 pages REVTEX, 3 figure
- …