13 research outputs found

    Development of UPS-SMES as a protection from momentary voltage drop

    Get PDF
    We have been developing the UPS-SMES as a protection from momentary voltage drop and power failure. The superconducting system is suitable as electric power storage for large energy extraction in a short time. The most important feature of superconducting coil system for the UPS-SMES is easy handling and maintenance-free operation. We have selected low temperature superconducting (LTS) coils instead of high temperature superconducting (HTS) coils from the viewpoint of cost and performance. However, it is difficult for the conventional LTS coils to fulfill maintenance-free operation since the cooling methods are either pool boiling with liquid helium or forced flow of supercritical helium. Thus, a conduction cooled LTS pulse coil has been designed as a key component of the UPS-SMES. The development program of 1 MW, 1 sec UPS-SMES is explained

    Development of 1 MJ Conduction-Cooled LTS Pulse Coil for UPS-SMES

    Get PDF
    A 1 MW, 1 s UPS-SMES is being developed for a protection from a momentary voltage drop and an instant power failure. As a key technology of the UPS-SMES, we developed a prototype LTS pulse coil with a stored energy of 100 kJ and conducted cooling and excitation tests in 2005. The operation test of the prototype UPS-SMES using this 100 kJ coil with power converters have been performed in 2006. A 1 MJ coil was designed before the fabrication of the 100 kJ prototype coil. The superconductor, the electric insulation technique, the winding method, and the cooling structure used for the 100 kJ coil were based upon the 1 MJ coil design. The successful performance test results of the prototype 100 kJ coil validated the design concept and fabrication technique of the 1 MJ coil. According to the achievement of the prototype 100 kJ UPS-SMES, the 1 MJ conduction-cooled LTS pulse coil has been fabricated successfully. The successful experimental results of the 100 kJ prototype coil with power converters and the fabrication procedure of the 1 MJ full size coil are described

    First Cool-Down Performance of the LHD

    Get PDF
    The first cool-down test of the Large Helical Device (LHD) and the performance of the LHD cryogenic system during the first cycle operation are described. The first cool-down started on Feb. 23, 1998 and finished on Mar. 22. After the cool-down, the excitation tests of the SC coils up to 1.5 T and the first cycle operations for plasma physics experiments were conducted until May 18. The first cycle operation was successfully completed after the warm-up process to room temperature from May 19 to Jun. 15. The cooling characteristics of the LHD, such as temperature distribution during cool-down, heat loads under steady state condition, reliability during long-term operation, are reporte

    Development of FAIR conductor and HTS coil for fusion experimental device

    Get PDF
    This study is aimed at the development of high-temperature superconducting (HTS) magnets for application in a fusion experimental device next to the Large Helical Device (LHD). By applying the features of an HTS, high current density and high stability can be balanced. As a candidate conductor, REBCO tapes and pure aluminum sheets are laminated and placed in the groove of an aluminum alloy jacket with a circular cross-section, after joining a lid to the jacket using friction stir welding, and twisting the conductor to homogenize its electrical and mechanical properties. The FAIR conductor derives its name from the processes and materials used in its development: Friction stir welding, an Aluminum alloy jacket, Indirect cooling, and REBCO tapes. Initially, the degradation of the critical current of the FAIR conductor is observed, which was eventually resolved. The development status of the FAIR conductor has been reported

    Improvement of Ic degradation of HTS Conductor (FAIR Conductor) and FAIR Coil Structure for Fusion Device

    Get PDF
    As a high-temperature superconducting (HTS) conductor with a large current capacity applicable to a nuclear fusion experimental device, REBCO (REBa 2 CuO y ) tapes and high-purity aluminum sheets are alternately laminated, placed in a groove of an aluminum alloy jacket having a circular cross section, and the lid is friction-stir welded. To make the current distribution and mechanical characteristics uniform, the conductor is twisted at the end of the manufacturing process. In the early prototype conductor, when the I c was measured in liquid nitrogen under self-magnetic field conditions, I c degradations were observed from the beginning, and the characteristic difference between the two prototype samples under the same manufacturing conditions were large. Furthermore, I c degradation was progressed by repeating the thermal cycle from room temperature to liquid nitrogen temperature. This I c degradation did not occur uniformly in the longitudinal direction of the conductor but was caused by local I c degradation occurring at multiple locations. If the conductor was not manufactured uniformly in the longitudinal direction, the difference in thermal shrinkage between the REBCO tape and the aluminum alloy jacket caused local stress concentration in the REBCO tape and buckling occurred. Element experiments to explain this mechanism were conducted to clarify the conditions under which I c degradation due to buckling occurs. Then prototype conductors were tested with improved manufacturing methods, and as a result, I c degradation could be suppressed to 20% or less. We have achieved the prospect of producing a conductor with uniform characteristics in the longitudinal direction

    Test of 10 kA-Class HTS WISE Conductor in High Magnetic Field Facility

    Get PDF
    High-temperature superconducting (HTS) conductor is a feasible candidate to make magnets for the next generation fusion devices because of its higher temperature margins and higher critical current in a high magnetic field in comparison to low-temperature superconducting (LTS) conductors. The recently proposed concept of the HTS-WISE (Wound and Impregnated Stacked Elastic tapes) conductor was studied to clarify its characteristics under certain magnetic fields. The WISE conductor, including 30-stacked REBCO (Rare-Earth Barium Copper Oxide) tapes, was fabricated and energized in a 9-T test facility which produced the condition of magnetic field B = 5 - 8 T and a temperature T = 30 - 50 K. Obtained critical currents (5.4 - 10.8 kA) increased with a decreasing magnetic field and/or temperature under the condition of T > 40 K. The maximum current of 16.9 kA was obtained at T = 30 K, which corresponded to the engineering current density jE = 60 A/mm2. Experimental results showed qualitative agreement with numerical calculations of the critical current. We confirmed the operation of the WISE conductor under a high magnetic field and low temperature
    corecore