199 research outputs found

    Dominant non-local superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire

    Full text link
    Cooper pair splitting (CPS) can induce non-local correlation between two normal conductors coupling to a superconductor. CPS into a double one-dimensional electron gas is an appropriate platform for extracting large amount of entangled electron pairs and one of the key ingredients for engineering Majorana Fermions with no magnetic field. Here we study CPS using a Josephson junction of a gate-tunable ballistic InAs double nanowire. The measured switching current into the two nanowires significantly larger than sum of that into the respective nanowires, indicating the inter-wire superconductivity dominant compared to the intra-wire superconductivity. From dependence on the number of propagating channels in the nanowires, the observed CPS is assigned to one-dimensional electron-electron interaction. Our results will pave the way for utilizing one-dimensional electron-electron interaction to reveal physics of high-efficient CPS and engineer Majorana Fermions in double nanowire systems via CPS

    On-line Identification of Electro-Conductivity in Electrolytic Solutions

    Get PDF
    An on-line method is proposed to identify electro-conductivity in electrolytic solutions. The method uses a model of a cell of electrolytic solutions in a micro reactor modeled by an electronic circuit. The circuit consists of a cell part with a resister and a capacitor connected in series and a measurement part having a resister. Then the resistance and the capacitance of the cell part are identified to calculate the electro-conductivity. The identification scheme is the least-square method with a forgetting factor calculated on-line. To avoid the effect of differentiation of measured signals, a filter is added to the identification method. The effectiveness of the proposed control scheme is shown by numerical simulation.</p

    Probabilistic tsunami hazard assessment based on the Gutenberg–Richter law in eastern Shikoku, Nankai subduction zone, Japan

    Get PDF
    Earthquake and tsunami predictions comprise huge uncertainties, thus necessitating probabilistic assessments for the design of defense facilities and urban planning. In recent years, computer development has advanced probabilistic tsunami hazard assessments (PTHAs), where hazard curves show the exceedance probability of the maximum tsunami height. However, owing to the lack of historical and geological tsunami records, this method is generally insufficient for validating the estimated hazard curves. The eastern coast of Shikoku in the Nankai subduction zone, Japan, is suitable for validation because tsunami records from historical Nankai Trough earthquakes are available. This study evaluated PTHAs by comparing the tsunami hazard curves and exceedance frequencies of historical Nankai Trough tsunamis. We considered 3480 earthquake scenarios representing the rupture patterns of past Nankai earthquakes and calculated all tsunamis. The probability of earthquake occurrence was based on the Gutenberg–Richter law. We considered uncertainty in tsunami calculations with astronomical tide variations. The estimated tsunami hazard curves are consistent with the exceedance frequencies obtained from historical tsunamis. In addition, sensitivity tests indicate the significance of the earthquake slip heterogeneity and tsunami defense facilities in PTHAs. We also extended the PTHAs to tsunami inundation maps in high resolution and proposed an effective new method for reducing the tsunami computation load

    Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor associated antigen (TAA) gp100 was one of the first identified and has been used in clinical trials to treat melanoma patients. However, the gp100 epitope peptide restricted to HLA-A*2402 has not been extensively examined clinically due to the ethnic variations. Since it is the most common HLA Class I allele in the Japanese population, we performed a phase I clinical trial of cancer vaccination using the HLA-A*2402 gp100 peptide to treat patients with metastatic melanoma.</p> <p>Methods</p> <p>The phase I clinical protocol to test a HLA-A*2402 gp100 peptide-based cancer vaccine was designed to evaluate safety as the primary endpoint and was approved by The University of Tokyo Institutional Review Board. Information related to the immunologic and antitumor responses were also collected as secondary endpoints. Patients that were HLA-A*2402 positive with stage IV melanoma were enrolled according to the criteria set by the protocol and immunized with a vaccine consisting of epitope peptide (VYFFLPDHL, gp100-in4) emulsified with incomplete Freund's adjuvant (IFA) for the total of 4 times with two week intervals. Prior to each vaccination, peripheral blood mononuclear cells (PBMCs) were separated from the blood and stored at -80°C. The stored PBMCs were thawed and examined for the frequency of the peptide specific T lymphocytes by IFN-γ- ELISPOT and MHC-Dextramer assays.</p> <p>Results</p> <p>No related adverse events greater than grade I were observed in the six patients enrolled in this study. No clinical responses were observed in the enrolled patients although vitiligo was observed after the vaccination in two patients. Promotion of peptide specific immune responses was observed in four patients with ELISPOT assay. Furthermore, a significant increase of CD8<sup>+ </sup>gp100-in4<sup>+ </sup>CTLs was observed in all patients using the MHC-Dextramer assay. Cytotoxic T lymphocytes (CTLs) clones specific to gp100-in4 were successfully established from the PBMC of some patients and these CTL clones were capable of lysing the melanoma cell line, 888 mel, which endogenously expresses HLA-restricted gp100-in4.</p> <p>Conclusion</p> <p>Our results suggest this HLA-restricted gp100-in4 peptide vaccination protocol was well-tolerated and can induce antigen-specific T-cell responses in multiple patients. Although no objective anti-tumor effects were observed, the effectiveness of this approach can be enhanced with the appropriate modifications.</p

    Field angle dependence of the zero-energy density of states in unconventional superconductors: analysis of the borocarbide superconductor YNi2B2C

    Full text link
    We investigate the field-angle-dependent zero-energy density of states for YNi2B2C with using realistic Fermi surfaces obtained by band calculations. Both the 17th and 18th bands are taken into account. For calculating the oscillating density of states, we adopt the Kramer-Pesch approximation, which is found to improve accuracy in the oscillation amplitude. We show that superconducting gap structure determined by analyzing STM experiments is consistent with thermal transport and heat capacity measurements.Comment: 4 pages, 1 figure, 25th international conference on Low Temperature Physics (Amsterdam, The Netherlands, August 6-13 2008) LT1597, to be published in Journal of Physics: Conference Series 200
    corecore