222 research outputs found

    Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean

    Full text link
    The opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount importance for the development of modern ocean characteristics. Notably, it has been suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current (ACC) formation, in the cooling of high- latitude South Atlantic waters and in the initiation of North Atlantic Deep Water (NADW) formation. Several model studies have aimed to assess the impacts of DP opening on climate, but most of them focused on surface climate, and only few used realistic Eocene boundary conditions. Here, we revisit the impact of the DP opening on ocean circulation with the IPSL- CM5A2 Earth System Model. Using appropriate middle Eocene (40 Ma) boundary conditions, we perform and analyze simulations with different depths of the DP (0, 100, 1,000, and 2,500 m) and compare results to existing geochemical data. Our experiments show that DP opening has a strong effect on Eocene ocean structure and dynamics even for shallow depths. The DP opening notably allows the formation of a proto- ACC and induces deep ocean cooling of 1.5°C to 2.5°C in most of the Southern Hemisphere. There is no NADW formation in our simulations regardless of the depth of the DP, suggesting that the DP on its own is not a primary control of deepwater formation in the North Atlantic. This study elucidates how and to what extent the opening of the DP contributed to the establishment of the modern global thermohaline circulation.Key PointsA shallow opening of the Drake Passage induces strong changes in ocean properties and dynamicsA proto- ACC is able to form during the Eocene under high levels of pCO2, but a strong ACC requires supplementary geographical changesNorth Atlantic Deep Water is probably not able to form before the separation of the Arctic and Atlantic OceansPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/3/palo20904-sup-0001-2020PA003889-SI.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/2/palo20904.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/1/palo20904_am.pd

    Identification of individual exosome-like vesicles by surface enhanced Raman spectroscopy

    Get PDF
    Exosome-like vesicles (ELVs) are a novel class of biomarkers that are receiving a lot of attention for the detection of cancer at an early stage. In this study the feasibility of using a surface enhanced Raman spectroscopy (SERS) based method to distinguish between ELVs derived from different cellular origins is evaluated. A gold nanoparticle based shell is deposited on the surface of ELVs derived from cancerous and healthy cells, which enhances the Raman signal while maintaining a colloidal suspension of individual vesicles. This nanocoating allows the recording of SERS spectra from single vesicles. By using partial least squares discriminant analysis on the obtained spectra, vesicles from different origin can be distinguished, even when present in the same mixture. This proof-of-concept study paves the way for noninvasive (cancer) diagnostic tools based on exosomal SERS fingerprinting in combination with multivariate statistical analysis

    Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2

    Get PDF
    We present the Utrecht contribution to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), using the Community Earth System Model version 1.0.5 (CCSM4-Utr). Using a standard pre-industrial configuration and the enhanced PlioMIP2 set of boundary conditions, we perform a set of simulations at various levels of atmospheric pCO2. This allows us to make an assessment of the mid-Pliocene reference (Eoi400) climate versus available proxy records and a pre-industrial control (E280), as well as to determine the sensitivity to different external forcing mechanisms. We find that our simulated Pliocene climate is considerably warmer than the pre-industrial reference, even under the same levels of atmospheric pCO2. Compared to the E280 case, the simulated climate of our Eoi400 is on average almost 5 °C warmer at the surface. Our Eoi400 case is among the warmest within the PlioMIP2 ensemble and only comparable to the results of models with a much higher climate sensitivity (i.e. CESM2, EC-Earth3.3, and HadGEM3). This is accompanied by a considerable polar amplification factor, increased precipitation and greatly reduced sea ice cover. A primary contribution to this enhanced Pliocene warmth is likely our warm model initialisation followed by a long spin-up, as opposed to starting from pre-industrial or present-day conditions. Added warmth in the deep ocean is partly the result of using an altered vertical mixing parametrisation in the Pliocene simulations, but this has a negligible effect at the surface. We find a stronger and deeper Atlantic Meridional Overturning Circulation (AMOC) in the Eoi400 case, but the associated meridional heat transport is mostly unaffected. In addition to the mean state, we find significant shifts in the behaviour of the dominant modes of variability at annual to decadal timescales. The Eoi400 ENSO amplitude is greatly reduced (−68 %) versus the E280 one, while the AMOC becomes more variable. There is also a strong coupling between AMOC strength and North Atlantic SST variability in the Eoi400, while North Pacific SST anomalies seem to have a reduced global influence with respect to the E280 through the weakened ENS

    Generation of human motor units with functional neuromuscular junctions in microfluidic devices

    Get PDF
    Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease

    Evolutionary novelty in the apoptotic pathway of aphids

    Get PDF
    Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphidspecific functions

    Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate

    Get PDF
    While the early Eocene has been considered in many modelling studies, detailed simulations of the middle and late Eocene climate are currently scarce. To understand Antarctic glaciation at the Eocene-Oligocene Transition (~ 34 Ma) as well as middle Eocene warmth, it is vital to have an adequate reconstruction of the middle-to-late Eocene climate. Here, we present a set of high resolution coupled climate simulations using the Community Earth System Model (CESM) version 1. Two middle-to-late Eocene cases are considered with new detailed 38 Ma geographical boundary conditions with a different radiative forcing. With 4 × pre-industrial concentrations of CO2 (i.e. 1120 ppm) and CH4 (~ 2700 ppb), the equilibrium sea surface temperatures correspond well to available late middle Eocene (42–38 Ma) proxies. Being generally cooler, the simulated climate with 2 × pre-industrial values is a good analog for that of the late Eocene (38–34 Ma). Deep water formation occurs in the South Pacific Ocean, while the North Atlantic is strongly stratified and virtually stagnant. A shallow and weak circumpolar current is present in the Southern Ocean with only minor effects on southward oceanic heat transport within wind-driven gyres. Terrestrial temperature proxies, although limited in coverage, also indicate that the results presented here are realistic. The reconstructed 38 Ma climate has a reduced equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. Climate sensitivity is similar (~ 0.7 °C/Wm2) to that of the present-day climate (~ 0.8 °C/Wm2; 3 °C per CO2 doubling), with significant polar amplification despite very limited sea ice and snow cover. High latitudes are mainly kept warm by albedo and cloud feedbacks in combination with global changes in geography and the absence of polar ice sheets. The integrated effect of geography, vegetation and ice accounts for a 6–7 °C offset between pre-industrial and 38 Ma Eocene boundary conditions. These 38 Ma simulations effectively show that a realistic middle-to-late Eocene climate can be reconstructed without the need for greenhouse gas concentrations much higher than proxy estimates. The general circulation and radiative budget allow for mild high-latitude regions and little to no snow and ice cover, without making equatorial regions extremely warm

    Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells.

    Get PDF
    Membrane protein insertion is an essential cellular process. The broad biophysical and topological range of membrane proteins necessitates multiple insertion pathways, which remain incompletely defined. Here, we have discovered a new membrane protein insertion pathway, identified the class of substrates it handles, explained why other known pathways do not work for these substrates and reconstituted the pathway using purified components

    A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes

    Get PDF
    A methodology for rapid, high-purity isolation of plasma membranes using superparamagnetic nanoparticles is described. The method is illustrated with high-resolution proteomic, glycomic and lipidomic analyses of presenilin-deficient cells

    Increased wintertime European atmospheric blocking frequencies in General Circulation Models with an eddy-permitting ocean

    Get PDF
    Midlatitude atmospheric blocking events are important drivers of long-lasting extreme weather conditions at regional to continental scales. However, modern climate models consistently underestimate their frequency of occurrence compared to observations, casting doubt on future projections of climate extremes. Using the prominent and largely underestimated winter blocking events in Europe as a test case, this study first introduces a spatio-temporal approach to study blocking activity based on a clustering technique, allowing to assess models’ ability to simulate both realistic frequencies and locations of blocking events. A sensitivity analysis from an ensemble of 49 simulations from 24 coupled climate models shows that the presence of a mesoscale eddy-permitting ocean model increases the realism of simulated blocking events for almost all types of patterns clustered from observations. This finding is further explained and supported by concomitant reductions in well-documented biases in Gulf Stream and North Atlantic Current positions, as well as in the midlatitude jet stream variability
    corecore