24 research outputs found

    Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review

    No full text
    Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD

    Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease:A Systematic Review

    No full text
    Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD

    Platelet Function in CKD:A Systematic Review and Meta-Analysis

    No full text
    BACKGROUND: Patients with CKD are at high risk for thrombotic and hemorrhagic complications. Abnormalities in platelet function are central to these complications, but reports on platelet function in relation to CKD are conflicting, and vary from decreased platelet reactivity to normal or increased platelet responsiveness. The direct effects of uremic toxins on platelet function have been described, with variable findings. METHODS: To help clarify how CKD affects platelet function, we conducted a systematic review and meta-analysis of platelet activity in CKD, with a focus on nondialysis-induced effects. We also performed an extensive literature search for the effects of individual uremic toxins on platelet function. RESULTS: We included 73 studies in the systematic review to assess CKD's overall effect on platelet function in patients; 11 of them described CKD's effect on ex vivo platelet aggregation and were included in the meta-analysis. Although findings on platelet abnormalities in CKD are inconsistent, bleeding time was mostly prolonged and platelet adhesion mainly reduced. Also, the meta-analysis revealed maximal platelet aggregation was significantly reduced in patients with CKD upon collagen stimulation. We also found that relatively few uremic toxins have been examined for direct effects on platelets ex vivo; ex vivo analyses had varying methods and results, revealing both platelet-stimulatory and inhibitory effects. However, eight of the 12 uremic toxins tested in animal models mostly induced prothrombotic effects. CONCLUSIONS: Overall, most studies report impaired function of platelets from patients with CKD. Still, a substantial number of studies find platelet function to be unchanged or even enhanced. Further investigation of platelet reactivity in CKD, especially during different CKD stages, is warranted

    Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions

    No full text
    Abstract Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease

    Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication

    No full text
    In patients with acute coronary syndrome, dual antiplatelet therapy with aspirin and a P2Y(12) inhibitor like prasugrel is prescribed for one year. Here, we investigated how the hemostatic function of platelets recovers after discontinuation of prasugrel treatment. Therefore, 16 patients who suffered from ST-elevation myocardial infarction were investigated. Patients were treated with aspirin (100 mg/day, long-term) and stopped taking prasugrel (10 mg/day) after one year. Blood was collected at the last day of prasugrel intake and at 1, 2, 5, 12 and 30 days later. Platelet function in response to ADP was normalized between five and 30 days after treatment cessation and in vitro addition of the reversible P2Y(12) receptor antagonist ticagrelor fully suppressed the regained activation response. Discontinuation of prasugrel resulted in the formation of an emerging subpopulation of ADP-responsive platelets, exhibiting high expression of active integrin α(IIb)β(3). Two different mRNA probes, thiazole orange and the novel 5′Cy5-oligo-dT probe revealed that this subpopulation consisted of juvenile platelets, which progressively contributed to platelet aggregation and thrombus formation under flow. During offset, juvenile platelets were overall more reactive than older platelets. Interestingly, the responsiveness of both juvenile and older platelets increased in time, pointing towards a residual inhibitory effect of prasugrel on the megakaryocyte level. In conclusion, the gradual increase in thrombogenicity after cessation of prasugrel treatment is due to the increased activity of juvenile platelets

    Vitamin K antagonist use induces calcification and atherosclerotic plaque progression resulting in increased hypercoagulability

    No full text
    AIMS: Vascular calcification is a hallmark of atherosclerotic burden and can predict the cardiovascular outcome. Vitamin K antagonists (VKA) are widely used anticoagulant drugs to treat patients at risk of arterial and venous thrombosis but are also associated with increase vascular calcification progression. We aim to unravel the paradox that VKA suppresses plasma coagulation but promotes vascular calcification and subsequent atherosclerosis-dependent coagulability of the vessel wall. METHODS AND RESULTS: Apoe (−/−) mice were placed on western-type diet enriched with the VKA warfarin for 18 weeks to measure atherosclerotic plaque burden, calcification, and coagulation. Patients (n = 54) displaying paroxysmal atrial fibrillation with a low cardiovascular risk, who were treated with VKA were included to measure pre-thrombotic state. Finally, primary vascular smooth muscle cells (VSMC) derived from human tissue explants were used for in vitro experiments. In Apoe(−/−) mice, VKA increases both atherosclerotic plaque size and calcification. Higher plaque calcification was associated with increased plasma levels of thrombin-antithrombin and factor IXa-antithrombin complexes in mice and patients treated with VKA. Mechanistically, phenotypic switching of VSMC into synthetic VSMC promotes thrombin generation, which is enhanced in a tissue-factor (TF)-dependent manner by VSMC calcification. Moreover, calcified VSMC exposed to whole blood under flow significantly enhanced platelet deposition and TF-dependent fibrin formation. CONCLUSIONS: Oral anticoagulation with VKA aggravates vascular calcification and atherosclerosis. VSMC phenotype differentiation impacts coagulation potential in a TF-dependent manner. VKA-induced vascular calcification increases hypercoagulability and could thereby potentially positively affect atherothrombosis
    corecore