219 research outputs found

    Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance

    Full text link
    We investigate the superfluid phase transition and effects of mass imbalance in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an cold Fermi gas. We point out that the Gaussian fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the TT-matrix theory, that are now widely used to study strong-coupling physics of cold Fermi gases, give unphysical results in the presence of mass imbalance. To overcome this problem, we extend the TT-matrix theory to include higher-order pairing fluctuations. Using this, we examine how the mass imbalance affects the superfluid phase transition. Since the mass imbalance is an important key in various Fermi superfluids, such as 40^{40}K-6^6Li Fermi gas mixture, exciton condensate, and color superconductivity in a dense quark matter, our results would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201

    Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle

    Get PDF
    With the ability to switch between proliferative and contractile phenotype, airway smooth muscle (ASM) cells can contribute to the progression of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), in which airway obstruction is associated with ASM hypertrophy and hypercontractility. A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules in various tissues, including ASM cells. AKAPs can anchor the regulatory subunits of protein kinase A (PKA), and guide cellular localization via various targeting domains. Here we investigated whether disruption of the AKAP-PKA interaction, by the cell permeable peptide stearated (st)-Ht31, alters human ASM proliferation and contractility. Treatment of human ASM with st-Ht31 enhanced the expression of protein markers associated with cell proliferation in both cultured cells and intact tissue, although this was not accompanied by an increase in cell viability or cell-cycle progression, suggesting that disruption of AKAP-PKA interaction on its own is not sufficient to drive ASM cell proliferation. Strikingly, st-Ht31 enhanced contractile force generation in human ASM tissue with concomitant upregulation of the contractile protein α-sm-actin. This upregulation of α-sm-actin was independent of mRNA stability, transcription or translation, but was dependent on proteasome function, as the proteasome inhibitor MG-132 prevented the st-Ht31 effect. Collectively, the AKAP-PKA interaction appears to regulate markers of the multi-functional capabilities of ASM, and this alter the physiological function, such as contractility, suggesting potential to contribute to the pathophysiology of airway diseases

    Ground states and dynamics of population-imbalanced Fermi condensates in one dimension

    Full text link
    By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of Physic

    Clinical and corneal microbial profile of infectious keratitis in a high HIV prevalence setting in rural South Africa

    Get PDF
    The purpose of this investigation was to determine the clinical and corneal microbial profile of infectious keratitis in a high human immunodeficiency virus (HIV) prevalence setting in rural South Africa. Data in this cross-sectional study were collected from patients presenting with symptoms of infectious keratitis (n = 46) at the ophthalmology outpatient department of three hospitals in rural South Africa. Corneal swabs were tested for herpes simplex virus type 1 (HSV-1) and 2 (HSV-2), varicella zoster virus (VZV) and adenovirus DNA by real-time polymerase chain reaction (PCR

    Activation of WNT/beta-Catenin Signaling in Pulmonary Fibroblasts by TGF-beta(1) Is Increased in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterized by abnormal extracellular matrix (ECM) turnover. Recently, activation of the WNT/β-catenin pathway has been associated with abnormal ECM turnover in various chronic diseases. We determined WNT-pathway gene expression in pulmonary fibroblasts of individuals with and without COPD and disentangled the role of β-catenin in fibroblast phenotype and function.We assessed the expression of WNT-pathway genes and the functional role of β-catenin, using MRC-5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD.Pulmonary fibroblasts expressed mRNA of genes required for WNT signaling. Stimulation of fibroblasts with TGF-β₁, a growth factor important in COPD pathogenesis, induced WNT-5B, FZD₈, DVL3 and β-catenin mRNA expression. The induction of WNT-5B, FZD₆, FZD₈ and DVL3 mRNA by TGF-β₁ was higher in fibroblasts of individuals with COPD than without COPD, whilst basal expression was similar. Accordingly, TGF-β₁ activated β-catenin signaling, as shown by an increase in transcriptionally active and total β-catenin protein expression. Furthermore, TGF-β₁induced the expression of collagen1α1, α-sm-actin and fibronectin, which was attenuated by β-catenin specific siRNA and by pharmacological inhibition of β-catenin, whereas the TGF-β₁-induced expression of PAI-1 was not affected. The induction of transcriptionally active β-catenin and subsequent fibronectin deposition induced by TGF-β₁ were enhanced in pulmonary fibroblasts from individuals with COPD.β-catenin signaling contributes to ECM production by pulmonary fibroblasts and contributes to myofibroblasts differentiation. WNT/β-catenin pathway expression and activation by TGF-β₁ is enhanced in pulmonary fibroblasts from individuals with COPD. This suggests an important role of the WNT/β-catenin pathway in regulating fibroblast phenotype and function in COPD

    Low temperature properties of the fermionic mixtures with mass imbalance in optical lattice

    Full text link
    We study the attractive Hubbard model with mass imbalance to clarify low temperature properties of the fermionic mixtures in the optical lattice. By combining dynamical mean-field theory with the continuous-time quantum Monte Carlo simulation, we discuss the competition between the superfluid and density wave states at half filling. By calculating the energy and the order parameter for each state, we clarify that the coexisting (supersolid) state, where the density wave and superfluid states are degenerate, is realized in the system. We then determine the phase diagram at finite temperatures.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
    corecore