95 research outputs found

    Pramanicin induces apoptosis in Jurkat leukemia cells; a role for JNK, p38 and caspase activation

    Get PDF
    Pramanicin is a novel anti-fungal drug with a wide range of potential application against human diseases. It has been previously shown that pramanicin induces cell death and increases calcium levels in vascular endothelial cells. In the present study, we showed that pramanicin induced apoptosis in Jurkat T leukemia cells in a dose- and time-dependent manner. Our data reveal that pramanicin induced the release of cytochrome c and caspase-9 and caspase-3 activation, as evidenced by detection of active caspase fragments and fluorometric caspase assays. Pramanicin also activated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinases (ERK 1/2) with different time and dose kinetics. Treatment of cells with specific MAP kinase and caspase inhibitors further confirmed the mechanistic involvement of these signalling cascades in pramanicin-induced apoptosis. JNK and p38 pathways acted as pro-apoptotic signalling pathways in pramanicin-induced apoptosis, in which they regulated release of cytochrome c and caspase activation. In contrast the ERK 1/2 pathway exerted a protective effect through inhibition of cytochrome c leakage from mitochondria and caspase activation, which were only observed when lower concentrations of pramanicin were used as apoptosis-inducing agent and which were masked by the intense apoptosis induction by higher concentrations of pramanicin. These results suggest pramanicin as a potential apoptosis-inducing small molecule, which acts through a well-defined JNK- and p38-dependent apoptosis signalling pathway in Jurkat T leukemia cells

    Label-free biosensors for the detection and quantification of cardiovascular risk markers

    Get PDF
    This paper presents a biosensor implementation for the detection of protein molecules using specific antibodies. Affinity sensors allow the detection and quantification of target molecules in complex mixtures by affinity-based interactions. Immobilized antibody molecules are the probes that bind to specific protein molecules (targets) in biological fluids. In this study, inter-digitated electrodes in the form of capacitance on glass slide were designed, fabricated and used to measure the changes in the dielectric properties of the inter-digitated capacitances. Our results in this study present that with a careful design of micro-interdigitated capacitors, a wider dynamic range and higher sensitivity can be achieved for the detection and quantification of C-Reeactive Protein

    Pramanicin analog induces apoptosis in human colon cancer cells: critical roles for Bcl-2, Bim, and p38 MAPK signaling

    Get PDF
    Pramanicin (PMC) is an antifungal agent that was previously demonstrated to exhibit antiangiogenic and anticancer properties in a few in vitro studies. We initially screened a number of PMC analogs for their cytotoxic effects on HCT116 human colon cancer cells. PMC-A, the analog with the most potent antiproliferative effect was chosen to further interrogate the underlying mechanism of action. PMC-A led to apoptosis through activation of caspase-9 and -3. The apoptotic nature of cell death was confirmed by abrogation of cell death with pretreatment with specific caspase inhibitors. Stress-related MAPKs JNK and p38 were both activated concomittantly with the intrinsic apoptotic pathway. Moreover, pharmacological inhibition of p38 proved to attenuate the cell death induction while pretreatment with JNK inhibitor did not exhibit a protective effect. Resistance of Bax -/- cells and the protective nature of caspase-9 inhibition indicate that mitochondria play a central role in PMC-A induced apoptosis. Early post-exposure elevation of cellular Bim and Bax was followed by a marginal Bcl-2 depletion and Bid cleavage. Further analysis revealed that Bcl-2 downregulation occurs at the mRNA level and is critical to mediate PMC-A induced apoptosis, as ectopic Bcl-2 expression substantially spared the cells from death. Conversely, forced expression of Bim proved to significantly increase cell death. In addition, analyses of p53-/- cells demonstrated that Bcl-2/Bim/Bax modulation and MAPK activations take place independently of p53 expression. Taken together, p53-independent transcriptional Bcl-2 downregulation and p38 signaling appear to be the key modulatory events in PMC-A induced apoptosis

    Bcl-2 inhibitors: emerging drugs in cancer therapy

    Get PDF
    Dose-limiting toxicity to healthy tissues is among the major hurdles in anticancer treatment along with intrinsic or acquired multi-drug resistance. Development of small molecule inhibitors (SMI) specific for antiapoptotic Bcl-2 proteins is a novel approach in a way that these antagonists are aimed to interfere with specific protein-protein interactions unlike conventional chemo-/radiotherapies. SMIs of antiapoptotic Bcl-2 proteins are assumed to compete with proapoptotic Bcl-2s to occupy BH3 docking grooves on the surfaces of antiapoptotic family members. Instead of directly initiating cell death, these inhibitors are intended to decrease apoptotic threshold in tumor cells that were already primed to death. In this regard, antiapoptotic Bcl-2 protein SMIs have the advantage of lower normal tissue toxicity relative to conventional anticancer therapies that interfere with general mechanisms including DNA synthesis, mitosis and tyrosine kinase activity. Besides, Bcl-2 antagonists were shown to potentiate efficacies of established drugs in several hematological malignancies and solid tumors which render them promising candidates for combination anticancer therapy. Utilizing these SMIs in such a way may prove to decrease the patient drug load by diminishing the required chemo-/radiotherapy dose. This review summarizes and compares BH3 mimetics on the basis of specificity, mode of action and efficacy, as well as providing remarks on their therapeutical potential and routes of development in near future
    • …
    corecore