21 research outputs found
„Hot Water Treatments for Vegetable Seeds“
Presentation of the Bingenheimer Saatgut AB
A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts
Didymella pinodella is the major pathogen of the pea root rot complex in Europe. This wide host range pathogen often asymptomatically colonizes its hosts, making the control strategies challenging. We developed a real-time PCR assay for the detection and quantification of D. pinodella based on the TEF-1 alpha gene sequence alignments. The assay was tested for specificity on a 54- isolate panel representing 35 fungal species and further validated in symptomatic and asymptomatic pea and wheat roots from greenhouse tests. The assay was highly consistent across separate qPCR reactions and had a quantification/detection limit of 3.1 pg of target DNA per reaction in plant tissue. Cross-reactions were observed with DNA extracts of five Didymella species. The risk of cross contamination, however, is low as the non-targets have not been associated with pea previously and they were amplified with at least 1000-fold lower sensitivity. Greenhouse inoculation tests revealed a high correlation between the pathogen DNA quantities in pea roots and pea root rot severity and biomass reduction. The assay also detected D. pinodella in asymptomatic wheat roots, which, despite the absence of visible root rot symptoms, caused wheat biomass reduction. This study provides new insights into the complex life style of D. pinodella and can assist in better understanding the pathogen survival and spread in the environament.info:eu-repo/semantics/publishedVersio
A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts
Didymella pinodella is the major pathogen of the pea root rot complex in Europe. This wide host range pathogen often asymptomatically colonizes its hosts, making the control strategies challenging. We developed a real-time PCR assay for the detection and quantification of D. pinodella based on the TEF-1 alpha gene sequence alignments. The assay was tested for specificity on a 54-isolate panel representing 35 fungal species and further validated in symptomatic and asymptomatic pea and wheat roots from greenhouse tests. The assay was highly consistent across separate qPCR reactions and had a quantification/detection limit of 3.1 pg of target DNA per reaction in plant tissue. Cross-reactions were observed with DNA extracts of five Didymella species. The risk of cross contamination, however, is low as the non-targets have not been associated with pea previously and they were amplified with at least 1000-fold lower sensitivity. Greenhouse inoculation tests revealed a high correlation between the pathogen DNA quantities in pea roots and pea root rot severity and biomass reduction. The assay also detected D. pinodella in asymptomatic wheat roots, which, despite the absence of visible root rot symptoms, caused wheat biomass reduction. This study provides new insights into the complex life style of D. pinodella and can assist in better understanding the pathogen survival and spread in the environment
Farming system effects on root rot pathogen complex and yield of faba bean (vicia faba) in Germany
Gefördert durch den Publikationsfonds der Universität Kasse
A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts
Gefördert durch den Publikationsfonds der Universität Kasse
Didymella pinodella: An Important Pea Root Rot Pathogen in France to Watch Out For?
Gefördert durch den Publikationsfonds der Universität Kasse
Table_1_Farming system effects on root rot pathogen complex and yield of faba bean (vicia faba) in Germany.xlsx
A survey across Germany was undertaken from 2016-2019 to evaluate effects of management system (organic vs conventional), pedo-climatic conditions and crop rotation history on faba bean root health status, diversity of major root rot pathogens and yield. Root rot incidence was generally low and there was no effect of the management system on the spectrum of pathogens isolated. Among the most common fungal species identified, frequencies of Fusarium redolens and Didymella pinodella were significantly higher in roots from organic fields compared with conventional and lower was observed for F. avenaceum, F. tricinctum and F. culmorum. Faba bean roots were colonized at similar rates by F. equiseti and the members of the F. oxysporum (FOSC) and F. solani (FSSC) species complexes in both management systems. Almost no legumes had been grown in the 5-11 years preceding the conventional faba beans surveyed while legumes had almost always been present during this period in the organic fields. This difference in rotational histories between the farming systems led to apparent cropping systems effects on the isolation frequencies of several species. For example, D. pinodella was ubiquitous in organic fields with a high frequency of legumes in the rotations but much rarer and often absent in conventional fields. Pedo-climatic conditions, particularly cool conditions at sowing and plant emergence and/or during the vegetative season favored most of the most prevalent Fusarium species identified in this study. In organic systems, yields correlated negatively with D. pinodella and F. redolens frequencies whereas higher levels of F. tricintum in faba bean roots had a positive correlation with yield. In conventional systems, faba bean yields depended more on the total precipitation before sowing and during the main growing season but were also negatively correlated with the frequencies of FOSC and F. culmorum. Phylogenetic analysis based on the TEF1 alpha locus indicated that the FSSC isolates mainly belonged to the F. pisi lineage. In contrast, the FOSC isolates were placed in 9 different lineages, with a conspicuous dominance of F. libertatis that has until now not been associated with any leguminous host.</p
Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.)
© 2018 Springer International Publishing AG, part of Springer Nature Two new species in the Fusarium solani species complex (FSSC) are described and introduced. The new taxa are represented by German isolates CBS 142481 and CBS 142480 collected from commercial yard waste compost and vascular tissue of a wilting branch of hibiscus, respectively. The phylogenetic relationships of the collected strains to one another and within the FSSC were evaluated based on DNA sequences of 6 gene loci. Due to the limited sequence data available for reference strains in GenBank, however, a multi-gene phylogenetic analysis included partial sequences for the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2). Morphological and molecular phylogenetic data independently showed that these strains are distinct populations of the FSSC, nested within Clade 3. Thus, we introduce Fusarium stercicola and Fusarium witzenhausenense as novel species in the complex. In addition, 19 plant species of 7 legume genera were evaluated for their potential to host the newly described taxa. Eighteen plant species were successfully colonized, with 6 and 9 of these being symptomatic hosts for F. stercicola and F. witzenhausenense, respectively. As plants of the family Fabaceae are very distant to the originally sourced material from which the new taxa wer e recovered, our results suggest that F. stercicola and F. witzenhausenense are not host-specific and are ecologically fit to sustain stable populations in variety of habitats
Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum).
Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea
Differences among sites in the <i>Fusarium</i> community composition.
<p>R and P-values obtained for every pair of sampling site using one-way ANOSIM performed on pooled abundance data from both years.</p