6 research outputs found

    The Conley Conjecture and Beyond

    Full text link
    This is (mainly) a survey of recent results on the problem of the existence of infinitely many periodic orbits for Hamiltonian diffeomorphisms and Reeb flows. We focus on the Conley conjecture, proved for a broad class of closed symplectic manifolds, asserting that under some natural conditions on the manifold every Hamiltonian diffeomorphism has infinitely many (simple) periodic orbits. We discuss in detail the established cases of the conjecture and related results including an analog of the conjecture for Reeb flows, the cases where the conjecture is known to fail, the question of the generic existence of infinitely many periodic orbits, and local geometrical conditions that force the existence of infinitely many periodic orbits. We also show how a recently established variant of the Conley conjecture for Reeb flows can be applied to prove the existence of infinitely many periodic orbits of a low-energy charge in a non-vanishing magnetic field on a surface other than a sphere.Comment: 34 pages, 1 figur

    Random Chain Complexes

    No full text
    We study random, finite-dimensional, ungraded chain complexes over a finite field and show that for a uniformly distributed differential a complex has the smallest possible homology with the highest probability: either zero or one-dimensional homology depending on the parity of the dimension of the complex. We prove that as the order of the field goes to infinity the probability distribution concentrates in the smallest possible dimension of the homology. On the other hand, the limit probability distribution, as the dimension of the complex goes to infinity, is a super-exponentially decreasing, but strictly positive, function of the dimension of the homology
    corecore