4 research outputs found

    Nano-structures Embedded Perovskite Solar Cells

    Get PDF
    Organic-inorganic hybrid perovskite solar cells (PSCs) are now attracting tremendous attention for new-generation photovoltaic device because of their excellent power conversion efficiency (PCE) and simple fabrication process. Various researches have been carried out to increase the efficiency of PSCs. Herein, we report on the three methods for enhanced performances of PSCs based on nanoimprint lithography technology

    Fabrication of perovskite solar cell with high short-circuit current density (J(SC)) using moth-eye structure of SiOX

    No full text
    The performance of solar cells is determined by three factors: the open-circuit voltage (V-OC), short-circuit current density (J(SC)), and fill factor (FF). The V-OC and FF are determined by the material bandgap and the series/shunt resistance, respectively. However, J(SC) is determined by the amount of incident light in addition to the bandgap of the material. In this study, a moth-eye pattern was formed on a glass surface via direct printing to increase the amount of incident light and thus increase J(SC). The moth-eye pattern is a typical antireflection pattern that reduces the reflection by gradually increasing the refractive index. A flat perovskite solar cell (F-PSC) and a moth-eye patterned perovskite solar cell (M-PSC) had J(SC) values of 23.70 and 25.50 mA/cm(2), respectively. The power-conversion efficiencies of the F-PSC and M-PSC were 19.81% and 21.77%, respectively

    Hexagonal array micro-convex patterned substrate for improving diffused transmittance in perovskite solar cells

    No full text
    In the past decade, the fastest development in solar cell research has occurred for perovskite solar cells. Owing to the favorable properties of perovskite materials, perovskite solar cells exhibit excellent power conversion efficiencies and there appears great potential for future development. In this paper, we report the fabrication of a substrate with excellent optical properties by incorporating hexagonal array micro-convex (HAMC) nanostructures in it before integration with the electrode (indium tin oxide and zinc oxide) and the halide for use in organic-inorganic perovskite solar cells. This was fabricated using nanoimprint lithography which showed excellent throughput and involved simple processing methods. The HAMC nanostructured substrate showed strong light scattering as compared to that of the conventional substrate. This resulted in the increase of current density of the fabricated solar cell from 19.45 mA/cm2 (un-patterned substrate) to 20.92 mA/cm2 (nanostructured substrate) with accompanying increase in the external quantum efficiency and a satisfactory performance by the perovskite solar cell
    corecore