27 research outputs found

    Locked Nucleic Acid Pentamers as Universal PCR Primers for Genomic DNA Amplification

    Get PDF
    Background: Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping. Results: We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 specie

    An Autotetraploid Linkage Map of Rose (Rosa hybrida) Validated Using the Strawberry (Fragaria vesca) Genome Sequence

    Get PDF
    Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map

    Rise and Demise of Bioinformatics? Promise and Progress

    Get PDF
    The field of bioinformatics and computational biology has gone through a number of transformations during the past 15 years, establishing itself as a key component of new biology. This spectacular growth has been challenged by a number of disruptive changes in science and technology. Despite the apparent fatigue of the linguistic use of the term itself, bioinformatics has grown perhaps to a point beyond recognition. We explore both historical aspects and future trends and argue that as the field expands, key questions remain unanswered and acquire new meaning while at the same time the range of applications is widening to cover an ever increasing number of biological disciplines. These trends appear to be pointing to a redefinition of certain objectives, milestones, and possibly the field itself
    corecore