49 research outputs found

    The Inhibitory Effect of Salmon Calcitonin on Tri-Iodothyronine Induction of Early Hypertrophy in Articular Cartilage

    Get PDF
    Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR) differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3)-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the explants.Early chondrocyte hypertrophy was induced in bovine articular cartilage explants by stimulation over four days with 20 ng/mL T3. The degree of hypertrophy was investigated by molecular markers of hypertrophy (ALP, IHH, COLX and MMP13), by biochemical markers of cartilage turnover (C2M, P2NP and AGNxII) and histology. The expression of the CTR was detected by qPCR and immunohistochemistry. T3-induced explants were treated with salmon or human calcitonin. Calcitonin down-stream signaling was measured by levels of cAMP, and by the molecular markers.Compared with untreated control explants, T3 induction increased expression of the hypertrophic markers (p<0.05), of cartilage turnover (p<0.05), and of CTR (p<0.01). Salmon, but not human, calcitonin induced cAMP release (p<0.001). Salmon calcitonin also inhibited expression of markers of hypertrophy and cartilage turnover (p<0.05).T3 induced early hypertrophy of chondrocytes, which showed an elevated expression of the CTR and was thus a target for salmon calcitonin. Molecular marker levels indicated salmon, but not human, calcitonin protected the cartilage from hypertrophy. These results confirm that salmon calcitonin is able to modulate the CTR and thus have chondroprotective effects

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family

    Communication in Psychiatric Coercive Treatment and Patients’ Decisional Capacity to Consent

    No full text
    An effective communication and the acquisition of a valid consent is central to a good and supporting doctor-patient relationship and a clinician’s ethical obligation in o order to respect patients’ autonomy, as well as their right to be involved in treatment decisions. However, often clinicians face several issues in performing this task, among which the most frequently reported are the fear of hurting the patient by communicating a bad diagnosis or not knowing how to manage the patient’s emotional reactions. In addition, there are vulnerable populations, such as those represented by psychiatric patients, who are at higher risk of decisional incapacity. Especially for those patients it is in fact particularly difficult for clinicians to find the proper balance between respecting the right of capable patients to make choices about their treatment and the right of incapable patients to be protected from the possible harmful consequences of their improper decisions. However, nor the presence of a severe psychiatric disorder nor a status of “involuntary hospitalized patient” have been reported to be a label for incapacity. Several tools have been developed to assist clinicians in patients’ decisional capacity evaluations, together with interventions aimed at enhancing informed consent acquisition in order to achieve a shared decision-making and lead the patient to become actively involved in his/her treatment decisions. Such approach would lead to a decrease in the perceived coercion, often reported in mental health care setting also from patients who are not involuntarily hospitalized, and to an increase in patients’ adherence to treatment
    corecore