26 research outputs found

    The Consent Paradox: Accounting for the Prominent Role of Consent in Data Protection

    Full text link
    The concept of consent is a central pillar of data protection. It features prominently in research, regulation, and public debates on the subject, in spite of the wide-ranging criticisms that have been levelled against it. In this paper, I refer to this as the consent paradox. I argue that consent continues to play a central role not despite but because the criticisms of it. I analyze the debate on consent in the scholarly literature in general, and among German data protection professionals in particular, showing that it is a focus on the informed individual that keeps the concept of consent in place. Critiques of consent based on the notion of “informedness” reinforce the centrality of consent rather than calling it into question. They allude to a market view that foregrounds individual choice. Yet, the idea of a data market obscures more fundamental objections to consent, namely the individual’s dependency on data controllers’ services that renders the assumption of free choice a fiction

    Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence

    Get PDF
    Stabilized HIV-1 envelope glycoproteins (Env) that resemble the native Env are utilized in vaccination strategies aimed at inducing broadly neutralizing antibodies (bNAbs). To limit the exposure of rare isolate-specific antigenic residues/determinants we generated a SOSIP trimer based on a consensus sequence of all HIV-1 group M isolates (ConM). The ConM trimer displays the epitopes of most known bNAbs and several germline bNAb precursors. The crystal structure of the ConM trimer at 3.9 Å resolution resembles that of the native Env trimer and its antigenic surface displays few rare residues. The ConM trimer elicits strong NAb responses against the autologous virus in rabbits and macaques that are significantly enhanced when it is presented on ferritin nanoparticles. The dominant NAb specificity is directed against an epitope at or close to the trimer apex. Immunogens based on consensus sequences might have utility in engineering vaccines against HIV-1 and other viruses

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family

    Heling eindexamens Ibn Ghaldoun

    No full text

    Heling eindexamens Ibn Ghaldoun

    No full text
    corecore