4 research outputs found

    A New Randomized Binary Prior Model for Hydraulic Tomography in Fractured Aquifers

    No full text
    We present a novel pilot-point-based hydraulic tomography (HT) inversion procedure to delineate preferential flow paths and estimate hydraulic properties in a fractured aquifer. Our procedure considers a binary prior model developed using a randomized algorithm. The randomized algorithm involves discretizing the domain into grid cells, assigning a binary label to each cell, traversing the grid randomly, and choosing the optimal grid configuration cell-by-cell. This binary prior model is used to guide the placement of pilot points and to constrain aquifer parameters during pilot-point-based HT inversion. A two-dimensional fractured granite rock block was considered to test our methodology under controlled laboratory conditions. Multiple pumping tests were conducted at selected ports and the pressure responses were monitored. The pumping datasets thus obtained were preprocessed using median filters to remove random noise, and then analyzed using the proposed procedure. The proposed binary prior algorithm was implemented in C++ by supplying the forward groundwater model, HydroGeoSphere (HGS). Pilot-point-assisted HT inversion was performed using the parameter-estimation tool, coupled to HGS. The resulting parameter distributions were assessed by: (1) a visual comparison of the K- and Ss-tomograms with the known topology of the fractures and (2) comparing model predictions with measurements made at two validation ports that were not used in calibration. The performance assessment revealed that HT with the proposed randomized binary prior could be used to recover fracture-connectivity and to predict drawdowns in fractured aquifers with reasonable accuracy, when compared to a conventional pilot-point inversion scheme

    A hydrochemical approach to estimate mountain front recharge in an aquifer system in Tamilnadu, India

    No full text
    © 2017 Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany Mountain-front recharge (MFR) is a process of recharging an aquifer by infiltration of surface flow from streams and adjacent basins in a mountain block and along a mountain front (MF). This is the first attempt in India to estimate MFR along the foothills of Courtallam using hydrogeochemistry and geostatistical tools. The estimation of MFR has been carried out by collecting groundwater samples along the foothills of Courtallam. Collected water samples were analyzed for major cations and anions using standard procedures. Hydrogeochemical facies show the existence of four water types in this region. Calcium-rich water derived from gneissic rock terrain indicates significant recharge from higher elevation. Log pCO 2 and ionic strength of the samples were also calculated to identify the geochemical process. Majority of the collected samples have sodium-rich water and weak ionic strength, which indicate foothill recharge and low residence time. Silicate and carbonate weathering have an equal interplay along the foothills with a relatively large fraction of Mg from the MF. The spatial diagrams of three factors show that the southern part of the study area is dominated by both weathering and anthropogenic processes, whereas the northern part is dominated by both leaching and weathering processes. Thus, the dominant weathering process represented by the second factor indicates the large recharge process along the foothills
    corecore