4 research outputs found

    Preliminary data regarding genetic diversity of several endangered and endemic Dianthus species from Romania generated by RAPD markers

    No full text
    Conservation of endangered and endemic species of Dianhtus from Romania, requires the investigation of genetic polymorphism in the populations. Preliminary data were obtained by molecular characterization using RAPD markers. DNA amplification with the 9 RAPD primers of the individuals belonging to different populations of D. callizonus, D. giganteus ssp. banaticus, D. glacialis ssp. gelidus, D. henteri, D. nardiformis, D. pratensis ssp. racovitzae, D. spiculifolius and D. tenuifolius revealed low level of polymorphism within and between populations. Several polymorphic RAPD markers were identified being useful for investigation of genetic diversity. Out the 9 primers studied by us, only the primer OPB-07 ensured amplification in all species and primers OPA-13, OPE-04 and 1225 showed positive results in most of the species. The primers 4A-26 and 4A-27 ensured amplification only in D. spiculifolius and the primers 4A-23 and OPM-18 gave no results in none of the species. Butiuc-Keul et al (PDF

    Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance

    No full text
    Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review

    Descriptive Analysis of Circulating Antimicrobial Resistance Genes in Vancomycin-Resistant Enterococcus (VRE) during the COVID-19 Pandemic

    No full text
    COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France) and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany) and further analyzed using the PCR technique for the presence of the following ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6′)-Im, aph(2)-Ib, ant(4′)-Ia, sul1, sul2, sul3, and NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were present in patients in the intensive care unit; thus, better healthcare policies should be implemented for the management and control of these highly resistant isolates in the future
    corecore