2,629 research outputs found

    Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-naphthoquinone derivatives: A combined electrochemical and computational study

    Get PDF
    Indexación: Scopus.Three 2-arylpiperidinyl-1,4-naphthoquinone derivatives were synthesized and evaluated in vitro to determine their cytotoxicity on cancer and normal cell lines. In order to establish their possible action mechanism, the electrochemical behaviour of these quinones was examined using cyclic voltammetry (CV) as technique by using a three-electrode setup: a glassy carbon, Ag/AgCl (in 3 M KCl), and platinum wire as working, reference, and counter electrodes, respectively. Kinetic studies were done to determine the control of the reduction reaction and the number of transferred electrons in the process. Furthermore, the addition of dsDNA to the quinone solutions allowed for the observation of an interaction between each quinone and dsDNA as the current-peaks became lower in presence of dsDNA. Otherwise, motivated to support the aforementioned results, electronic structure calculations at the TPSS-D3/6-31+G(d,p) level of theory were carried out in order to find the most favourable noncovalently bonded complexes between quinones and DNA. Noncovalent complexes formed between DNA and 2-arylpiperidinyl-1,4-naphthoquinones and stabilized by π-stacking interactions along with the well-known hydrogen-bonded complexes were found, with the former being more stable than the latter. These results suggest that the intercalation of these quinone derivatives in DNA is the most likely action mechanism. © 2018 King Saud Universityhttps://www.sciencedirect.com/science/article/pii/S1878535218300893?via%3Dihu

    Two successive partial mini-filament confined ejections

    Get PDF
    Active region (AR) NOAA 11476 produced a series of confined plasma ejections, mostly accompanied by flares of X-ray class M, from 08 to 10 May 2012. The structure and evolution of the confined ejections resemble that of EUV surges; however, their origin is associated to the destabilization and eruption of a mini-filament, which lay along the photospheric inversion line (PIL) of a large rotating bipole. Our analysis indicate that the bipole rotation and flux cancellation along the PIL have a main role in destabilizing the structure and triggering the ejections. The observed bipole emerged within the main following AR polarity. Previous studies have analyzed and discussed in detail two events of this series in which the mini-filament erupted as a whole, one at 12:23 UT on 09 May and the other at 04:18 UT on 10 May. In this article we present the observations of the confined eruption and M4.1 flare on 09 May 2012 at 21:01 UT (SOL2012-05-09T21:01:00) and the previous activity in which the mini-filament was involved. For the analysis we use data in multiple wavelengths (UV, EUV, X-rays, and magnetograms) from space instruments. In this particular case, the mini-filament is seen to erupt in two different sections. The northern section erupted accompanied by a C1.6 flare and the southern section did it in association with the M4.1 flare. The global structure and direction of both confined ejections and the location of a far flare kernel, to where the plasma is seen to flow, suggest that both ejections and flares follow a similar underlying mechanism.Fil: Poisson, Mariano. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bustos, C.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Lopez Fuentes, Marcelo Claudio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Cristiani, Germán Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Study on mechanical properties of mortars containing steel shot and sea sand as fine aggregate replacement

    Get PDF
    In this study, the use of solid waste known in the metallurgical market as steel shot that is generated in the production of metallic elements has been analyzed. Normally the destination of this solid waste is the sanitary landfills of the cities or the security cells since it is classified as hazardous waste. In addition, the use of materials with high availability and that were not previously used in the construction industry, such as sea sand was used in the manufacture of mortar cubes as a fine aggregate. A granulometric analysis of each of the filling materials followed by the casting of 63 mortar cubes with four different fine aggregate replacement ratios (0%, 30%, 70% and 100%) were carried out. After the curing period, the compressive strength and the weight of the resulting mortars have been determined. The results from this study indicated that by completely replacing the fine aggregate with the s teel shot waste the density and the compressive strength of the resulting mortars were increased, which indicates that this new material can be used in the construction industry

    Forecasting the air pollution episode potential in the Canary Islands

    Get PDF
    International audienceIn the frame of the WMO Global Atmosphere Watch Urban Research Meteorology and Environment programme (GURME), a system for forecasting air pollution episode potential in the Canary Islands has been developed. Meteorological parameters relevant to air quality (synoptic wind speed, wind direction, boundary layer height and temperature at 91 vertical levels) are obtained from the European Centre for Medium range Weather Forecasting (ECMWF) once a day for up to four days ahead. In addition, a model based on the analogue method utilising six years of historical meteorological and air quality data predicts the probability of SO2 concentration exceeding certain thresholds for a measurement station located in Santa Cruz de Tenerife. Meteorological forecasts are also provided from a high resolution (2 km) local area model (MM5) implemented for the Canary Islands domain. This simple system is able to forecast meteorological conditions which are favourable to the occurrence of pollution episodes for the forthcoming days

    Redox-Active Nanomaterials For Nanomedicine Applications

    Get PDF
    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials

    Nonparametric Edge Detection in Speckled Imagery

    Full text link
    We address the issue of edge detection in Synthetic Aperture Radar imagery. In particular, we propose nonparametric methods for edge detection, and numerically compare them to an alternative method that has been recently proposed in the literature. Our results show that some of the proposed methods display superior results and are computationally simpler than the existing method. An application to real (not simulated) data is presented and discussed.Comment: Accepted for publication in Mathematics and Computers in Simulatio

    Hydration of the Sulfuric Acid−Methylamine Complex and Implications for Aerosol Formation

    Get PDF
    The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0−6. Because it is a strong acid−base system, H2SO4−NH2CH3 quickly forms a tightly bound HSO4−−NH3CH3+ complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4−NH2CH3 is −21.8 kcal mol−1 compared with −16.8 kcal mol−1 for H2SO4−NH3 and −12.8 kcal mol−1 for H2SO4−H2O. Adding one to two water molecules to the H2SO4−NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4−NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity

    Studies on erythrocyte aminolaevulinate dehydratase I. Its purification and possible therapeutic applications

    Get PDF
    1. 1. A method for purifying human erythrocytes ALA-D, using a mixture of n-butanol and chloroform, which denature hemoglobin, followed by ammonium sulphate fractionation and affinity chromatography yielding a 1600-fold purified enzyme, is described. 2. 2. By oxidation of Sephadex G-25 with NaIO4, a polyaldehyde, is obtained which can be covalently bound to the ALA-D; however the immobilized enzyme is inactive, because essential ε{lunate}-amino groups at the active site were involved in the coupling. Similar experiments with another enzyme, Rhodanese, resulted in an active insolubilized preparation. 3. 3. By suspending the carrier-enzyme in buffer, slow solubilization with simultaneous release of protein occurs, indicating that this approach might find important therapeutical applications in the treatment of enzyme deficiencies. © 1980.Fil:Bustos, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Stella, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:C. Batlle, A.M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    • …
    corecore