4,434 research outputs found

    Electronic states and magnetic excitations in LiV2O4: Exact diagonalization study

    Get PDF
    Motivated by recent inelastic neutron scattering experiment we examine magnetic properties of LiV2O4. We consider a model which describes the half-filled localized A1g spins interacting via frustrated antiferromagnetic Heisenberg exchange and coupled by local Hund's interaction with the 1/8-filled itinerant Eg band, and study it within an exact diagonalization scheme. In the present study we limited the analysis to the case of the cluster of two isolated tetrahedrons. We obtained that both the ground state structure and low-lying excitations depend strongly on the value of the Hund's coupling which favors the triplet states. With increasing temperature the triplet states become more and more populated which results in the formation of non-zero residual magnetic moment. We present the temperature dependence of calculated magnetic moment and of the spin-spin correlation functions at different values of Hund's coupling and compare them with the experimental results.Comment: 7 pages. 6 eps figure

    Effect of Disorder on Fermi surface in Heavy Electron Systems

    Full text link
    The Kondo lattice model with substitutional disorder is studied with attention to the size of the Fermi surface and the associated Dingle temperature. The model serves for understanding heavy-fermion Ce compounds alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is identified from the steepest change of the momentum distribution of conduction electrons, and is derived at low enough temperature by the dynamical mean-field theory (DMFT) combined with the coherent potential approximation (CPA). The Fermi surface without magnetic field increases in size with decreasing x from x=1 (Ce end), and disappears at such x that gives the same number of localized spins as that of conduction electrons. From the opposite limit of x=0 (La end), the Fermi surface broadens quickly as x increases, but stays at the same position as that of the La end. With increasing magnetic field, a metamagnetic transition occurs, and the Fermi surface above the critical field changes continuously across the whole range of x. The Dingle temperature takes a maximum around x=0.5. Implication of the results to experimental observation is discussed.Comment: 5 pages, 5 figure

    Depleted Kondo Lattices

    Full text link
    We consider a two dimensional Kondo lattice model with exchange J and hopping t in which three out of four impurity spins are removed in a regular way. At the particle-hole symmetric point the model may be studied with auxiliary field quantum Monte Carlo methods without sign problems. To achieve the relevant energy scales on finite clusters, we introduce a simple method to reduce size effects by up to an order of magnitude in temperature. In this model, a metallic phase survives up to arbitrarily low temperatures before being disrupted by magnetic fluctuations which open a gap in the charge sector. We study the formation of the heavy-electron state with emphasis on a crossover scale T* defined by the maximum in the resistivity versus temperature curve. The behavior of thermodynamic properties such as specific heat as well as spin and charge uniform susceptibilities are studied as the temperature varies in a wide range across T*. Within our accuracy T* compares well to the Kondo scale of the related single impurity problem. Finally our QMC resuls are compared with mean-field approximations.Comment: 12 pages, 13 figures. Submitted to Phys. Rev.

    Two energy scales and slow crossover in YbAl3

    Full text link
    Experimental results for the susceptibility, specific heat, 4f occupation number, Hall effect and magnetoresistance for single crystals of YbAl3_{3} show that, in addition to the Kondo energy scale kBTKk_{B}T_{K} % \sim 670K, there is a low temperature scale Tcoh<50T_{coh}<50K for the onset of coherence. Furthermore the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. These effects may reflect the behavior of the Anderson Lattice in the limit of low conduction electron density.Comment: Ten pages, including three figure

    Coherence scale of the Kondo lattice

    Get PDF
    It is shown that the large-N approach yields two energy scales for the Kondo lattice model. The single-impurity Kondo temperature, TKT_K, signals the onset of local singlet formation, while Fermi liquid coherence sets in only below a lower scale, TT^{\star}. At low conduction electron density ncn_c ("exhaustion" limit), the ratio T/TKT^{\star}/T_K is much smaller than unity, and is shown to depend only on ncn_c and not on the Kondo coupling. The physical meaning of these two scales is demonstrated by computing several quantities as a function of ncn_c and temperature.Comment: 4 pages, 4 eps figures. Minor changes. To appear in Phys. Rev. Let

    On the heavy-fermion behavior of the pyrochlore transition-metal oxide LiV2O4LiV_{2}O_{4}

    Full text link
    Motivated by the heavy fermion Fermi liquid (HFFL) features observed at low-TT in the pyrochlore LiV2O4LiV_{2}O_{4}, we consider a material-specific model that includes aspects of the local quantum chemistry, the geometrically frustrated lattice structure, and strong correlations in a {\it single} approach. In particular, we show how geometrical frustration (GF) gives rise to a crossover scale, T<<JT^{*}<<J, the intersite (AF) exchange, below which the metallic system shows HFFL features. Our scenario is a specific realization of the importance of GF effects in driving HFFL behavior in LiV2O4LiV_{2}O_{4}, and provides a natural understanding of various puzzling features observed experimentally.Comment: 4 pages, 3 figure

    Incoherent non-Fermi liquid scattering in a Kondo lattice

    Full text link
    One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].Comment: 4 pages, 3 figures (published version

    Experimental Determination of the Characteristics of a Positron Source Using Channeling

    Full text link
    Numerical simulations and `proof of principle' experiments showed clearly the interest of using crystals as photon generators dedicated to intense positron sources for linear colliders. An experimental investigation, using a 10 GeV secondary electron beam, of the SPS-CERN, impinging on an axially oriented thick tungsten crystal, has been prepared and operated between May and August 2000. After a short recall on the main features of positron sources using channeling in oriented crystals, the experimental set-up is described. A particular emphasis is put on the positron detector made of a drift chamber, partially immersed in a magnetic field. The enhancement in photon and positron production in the aligned crystal have been observed in the energy range 5 to 40 GeV, for the incident electrons, in crystals of 4 and 8 mm as in an hybrid target. The first results concerning this experiment are presented hereafter.Comment: 3 pages, 6 figures, submitted to Linac200

    Mass-Enhanced Fermi Liquid Ground State in Na1.5_{1.5}Co2_2O4_4

    Full text link
    Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na1.5_{1.5}Co2_2O4_4 as a function of temperature TT. Below a characteristic temperature TT^*=30-40 K, electrical resistivity shows a metallic conductivity with a T2T^2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at \sim14 K. The electronic specific heat coefficient γ\gamma is \sim60 mJ/molK2^2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in dd-electron heavy fermion compound LiV2_2O4_4.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004

    Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes

    Full text link
    We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave ("stripe") correlations: the gapping of the order parameter fluctuations leads to a fractionalization of spin and charge collective modes, and this transition has been proposed as a candidate for the cuprates near optimal doping. The coupling between the order parameter and long-wavelength volume and shape deformations of the Fermi surface is analyzed by the renormalization group, and a runaway flow to a non-perturbative regime is found in most cases. A phenomenological scaling analysis of simple observable properties of possible second order quantum critical points is presented, with results quite similar to those near quantum spin glass transitions and to phenomenological forms proposed by Schroeder et al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark
    corecore