4,434 research outputs found
Electronic states and magnetic excitations in LiV2O4: Exact diagonalization study
Motivated by recent inelastic neutron scattering experiment we examine
magnetic properties of LiV2O4. We consider a model which describes the
half-filled localized A1g spins interacting via frustrated antiferromagnetic
Heisenberg exchange and coupled by local Hund's interaction with the 1/8-filled
itinerant Eg band, and study it within an exact diagonalization scheme. In the
present study we limited the analysis to the case of the cluster of two
isolated tetrahedrons. We obtained that both the ground state structure and
low-lying excitations depend strongly on the value of the Hund's coupling which
favors the triplet states. With increasing temperature the triplet states
become more and more populated which results in the formation of non-zero
residual magnetic moment. We present the temperature dependence of calculated
magnetic moment and of the spin-spin correlation functions at different values
of Hund's coupling and compare them with the experimental results.Comment: 7 pages. 6 eps figure
Effect of Disorder on Fermi surface in Heavy Electron Systems
The Kondo lattice model with substitutional disorder is studied with
attention to the size of the Fermi surface and the associated Dingle
temperature. The model serves for understanding heavy-fermion Ce compounds
alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is
identified from the steepest change of the momentum distribution of conduction
electrons, and is derived at low enough temperature by the dynamical mean-field
theory (DMFT) combined with the coherent potential approximation (CPA). The
Fermi surface without magnetic field increases in size with decreasing x from
x=1 (Ce end), and disappears at such x that gives the same number of localized
spins as that of conduction electrons. From the opposite limit of x=0 (La end),
the Fermi surface broadens quickly as x increases, but stays at the same
position as that of the La end. With increasing magnetic field, a metamagnetic
transition occurs, and the Fermi surface above the critical field changes
continuously across the whole range of x. The Dingle temperature takes a
maximum around x=0.5. Implication of the results to experimental observation is
discussed.Comment: 5 pages, 5 figure
Depleted Kondo Lattices
We consider a two dimensional Kondo lattice model with exchange J and hopping
t in which three out of four impurity spins are removed in a regular way. At
the particle-hole symmetric point the model may be studied with auxiliary field
quantum Monte Carlo methods without sign problems. To achieve the relevant
energy scales on finite clusters, we introduce a simple method to reduce size
effects by up to an order of magnitude in temperature. In this model, a
metallic phase survives up to arbitrarily low temperatures before being
disrupted by magnetic fluctuations which open a gap in the charge sector. We
study the formation of the heavy-electron state with emphasis on a crossover
scale T* defined by the maximum in the resistivity versus temperature curve.
The behavior of thermodynamic properties such as specific heat as well as spin
and charge uniform susceptibilities are studied as the temperature varies in a
wide range across T*. Within our accuracy T* compares well to the Kondo scale
of the related single impurity problem. Finally our QMC resuls are compared
with mean-field approximations.Comment: 12 pages, 13 figures. Submitted to Phys. Rev.
Two energy scales and slow crossover in YbAl3
Experimental results for the susceptibility, specific heat, 4f occupation
number, Hall effect and magnetoresistance for single crystals of YbAl
show that, in addition to the Kondo energy scale 670K,
there is a low temperature scale K for the onset of coherence.
Furthermore the crossover from the low temperature Fermi liquid regime to the
high temperature local moment regime is slower than predicted by the Anderson
impurity model. These effects may reflect the behavior of the Anderson Lattice
in the limit of low conduction electron density.Comment: Ten pages, including three figure
Coherence scale of the Kondo lattice
It is shown that the large-N approach yields two energy scales for the Kondo
lattice model. The single-impurity Kondo temperature, , signals the onset
of local singlet formation, while Fermi liquid coherence sets in only below a
lower scale, . At low conduction electron density
("exhaustion" limit), the ratio is much smaller than unity, and
is shown to depend only on and not on the Kondo coupling. The physical
meaning of these two scales is demonstrated by computing several quantities as
a function of and temperature.Comment: 4 pages, 4 eps figures. Minor changes. To appear in Phys. Rev. Let
On the heavy-fermion behavior of the pyrochlore transition-metal oxide
Motivated by the heavy fermion Fermi liquid (HFFL) features observed at
low- in the pyrochlore , we consider a material-specific model
that includes aspects of the local quantum chemistry, the geometrically
frustrated lattice structure, and strong correlations in a {\it single}
approach. In particular, we show how geometrical frustration (GF) gives rise to
a crossover scale, , the intersite (AF) exchange, below which the
metallic system shows HFFL features. Our scenario is a specific realization of
the importance of GF effects in driving HFFL behavior in , and
provides a natural understanding of various puzzling features observed
experimentally.Comment: 4 pages, 3 figure
Incoherent non-Fermi liquid scattering in a Kondo lattice
One of the most notorious non-Fermi liquid properties of both archetypal
heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is
an electrical resistivity that evolves linearly with temperature, T. In the
heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the
first indications of the presence of a zero-temperature instability, or quantum
critical point. Here, we report the observation of a unique control parameter
of T-linear scattering in CeCoIn5, found through systematic chemical
substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce
sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5
is strongly dependent on the f-electron configuration of the R ion, whereas two
other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are
not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature
of incoherent scattering centers in the Kondo lattice, which provides insight
into the anomalous scattering rate synonymous with quantum criticality [7].Comment: 4 pages, 3 figures (published version
Experimental Determination of the Characteristics of a Positron Source Using Channeling
Numerical simulations and `proof of principle' experiments showed clearly the
interest of using crystals as photon generators dedicated to intense positron
sources for linear colliders. An experimental investigation, using a 10 GeV
secondary electron beam, of the SPS-CERN, impinging on an axially oriented
thick tungsten crystal, has been prepared and operated between May and August
2000. After a short recall on the main features of positron sources using
channeling in oriented crystals, the experimental set-up is described. A
particular emphasis is put on the positron detector made of a drift chamber,
partially immersed in a magnetic field. The enhancement in photon and positron
production in the aligned crystal have been observed in the energy range 5 to
40 GeV, for the incident electrons, in crystals of 4 and 8 mm as in an hybrid
target. The first results concerning this experiment are presented hereafter.Comment: 3 pages, 6 figures, submitted to Linac200
Mass-Enhanced Fermi Liquid Ground State in NaCoO
Magnetic, transport, and specific heat measurements have been performed on
layered metallic oxide NaCoO as a function of temperature .
Below a characteristic temperature =3040 K, electrical resistivity
shows a metallic conductivity with a behavior and magnetic susceptibility
deviates from the Curie-Weiss behavior showing a broad peak at 14 K. The
electronic specific heat coefficient is 60 mJ/molK at 2 K.
No evidence for magnetic ordering is found. These behaviors suggest the
formation of mass-enhanced Fermi liquid ground state analogous to that in
-electron heavy fermion compound LiVO.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004
Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes
We describe two dimensional models with a metallic Fermi surface which
display quantum phase transitions controlled by strongly interacting critical
field theories below their upper critical dimension. The primary examples
involve transitions with a topological order parameter associated with
dislocations in collinear spin density wave ("stripe") correlations: the
gapping of the order parameter fluctuations leads to a fractionalization of
spin and charge collective modes, and this transition has been proposed as a
candidate for the cuprates near optimal doping. The coupling between the order
parameter and long-wavelength volume and shape deformations of the Fermi
surface is analyzed by the renormalization group, and a runaway flow to a
non-perturbative regime is found in most cases. A phenomenological scaling
analysis of simple observable properties of possible second order quantum
critical points is presented, with results quite similar to those near quantum
spin glass transitions and to phenomenological forms proposed by Schroeder et
al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark
- …